RELATO DE EXPERIÊNCIA

TORRE DE HANOI E CONSTRUÇÃO DO CONHECIMENTO

Lino de Macedo *

RESUMO: Trata-se, no presente texto, de ilustrar uma experiência do autor e dos participantes do Laboratório de Psicopedagogia, que ele coordena. Esta consiste no uso de jogos para a análise, teórica e educacional, de termos que se querem importantes ao processo do conhecimento (com ênfase no problema da aprendizagem escolar em Língua Portuguesa ou Matemática). O exemplo aqui apresentado refere-se ao jogo ou quebra-cabeça "Torre de Hanói" e por seu intermédio são analisados alguns aspectos que Piaget considera em sua teoria do conhecimento.

Escolhi, como ilustração daquilo que temos feito em nosso Laboratório de Psicopedagogia (LaPp), o texto "Torre de Hanói e construção do conhecimento", não por acaso. De minha parte, conheci, há quinze anos, este interessante e antigo e tão alegórico jogo (ou quebra-cabeça) chinês por intermédio do livro "La prise de conscience" de Piaget (1974, cap. XII). Desde então, sempre que possível, utilizei-o em minhas aulas ou conferências. Sob minha orientação, Leny Martins Rodrigues Teixeira, em 1983, usou-o como instrumento de sua pesquisa, relatada na dissertação "Permutação, quantificação de probabilidades e torre de Hanói: Análise comparativa em escolares de segundo grau".

O texto, que se lê a seguir, ainda que nunca publicado, tem sido base de muitas aulas e oficinas, dentro de um projeto de nosso laboratório, que eu designo por "Oficina de jogos e teoria de Piaget". Por isso, o caso "Torre de Hanói" e os aspectos teóricos aqui analisados são, insisto, ilustração desta nossa tão rica, intensa e, talvez, ousada experiência de pretender — via jogos — analisar noções ou princípios que julgamos importantes ao estudo da teoria de Piaget. Esta experiência tem sido realizada com alunos de nível universitário, professores de primeiro e segundo graus, ou outros profissionais interessados em Piaget ou na análise psicológica ou pedagógica da questão do conhecimento.

O procedimento que utilizamos nas oficinas de jogos, com o intuito de transmitir aspectos fundamentais da teoria de Piaget, têm geralmente a seguinte divisão: em uma primeira parte, os alunos realizam um jogo, já dirigidos para aspectos que serão, na segunda parte, tematizados na perspectiva daquele autor, para, em uma terceira e última parte, refletir-se sobre decorrências educacionais de tudo isso. Geralmente, o trabalho prático é feito em grupo e muitas vezes estas três partes ocorrem em outra sequência, segundo a dinâmica sugerida pelo funcionamento do grupo.

Para considerar como se processa o conhecimento podemos nos servir de um jogo, muito utilizado por professores de Matemática, no tópico "Solução de Problemas". Trata-se da "Torre de Hanói" (Piaget, 1974). Esta consiste em um dispositivo composto de três colunas coloridas, dentro das quais pode-se inserir peças circulares de diferentes diâmetros, graças ao furo central que todas têm. As regras do jogo são muito simples: (a) só se pode locomover um disco por vez; (b) um disco menor só pode ser colocado sobre um maior, jamais o contrário; e (c) trata-se sempre de refazer, em outra coluna, uma torre de um, dois, três ou mais discos. As colunas intercambiam-se nas funções de coluna de partida (lugar da torre inicial), intermediária e coluna de chegada (lugar onde se refará a torre).

Ao efetuar a experiência de transportar uma torre de uma coluna para outra, julgamos interessante considerar as seguintes questões ou problemas:

* Professor Titular do Instituto de Psicologia da USP.
1. Inventar um código que nos possibilite anotar as diferentes movimentações efetuadas, nos casos de torres com 1, 2, 3, 4 ou 5 discos;
2. Analisar as regularidades que existem entre as torres de números pares e de números ímpares de discos;
3. Analisar os movimentos do disco 1 (o menor de todos), do disco 2 (o segundo menor de todos) e, assim, por diante;
4. Preencher o quadro abaixo e analisar as regularidades entre os números de deslocamentos entre eles:

<table>
<thead>
<tr>
<th>Discos</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Nº total de Deslocamentos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torre</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>Nº total de Deslocamentos</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Generalizar os aspectos acima para torres de 6, 7 ou n discos;
6. Inventar uma equação que nos possibilite prever o número mínimo de deslocamentos para n discos.

Quanto ao código (1) propomos, tal como Piaget (1974), que se adote a seguinte convenção: A, para a coluna de partida; B, para a coluna intermediária e C, para a de chegada. Isso, para quaisquer que sejam os lugares destas colunas, ou seja, o que importa são as funções das colunas esquerda, direita ou central, e não seus lugares. Por este meio podemos registar os movimentos de uma torre de dois discos, por exemplo, da seguinte forma: 1AB/2AC/1BC, onde 1 e 2 referem-se aos discos e A, B e C são colunas de partida (A), intermediária (B) ou de chegada (C).

Quanto às regularidades (2) existentes entre as torres de números pares constatamos que sempre começam pela coluna intermediária e que as de números ímpares, sempre pela coluna de chegada. Assim, para uma torre de qualquer número sabemos por onde começar.

Se acompanhamos (3) os movimentos dos discos um a um, verificaremos que todos seguem o mesmo percurso, isto é, vão de uma coluna (por exemplo, A) para outra (B) e em seguida para a terceira (C), recomeçando nesta mesma ordem. Ou então, a ordem é, A, C, B; A, C, B; c, assim, sucessivamente. O jogador paciente poderá, com estes conhecimentos, escrever o texto que enumera a movimentação dos discos de uma torre qualquer, pois sabe o movimento do primeiro disco e sua sequência de movimentação. Daí pode deduzir o movimento do segundo disco — se o primeiro fez o movimento A/B/C, o segundo só poderá fazer o movimento A/C/B — e de todos os demais.

Quanto ao quadro (4) verificamos, pelo menos duas regularidades: há sempre um disco — o último — que movimenta-se uma única vez (vai de A a C) e todos os demais movimentam-se em alguma potência de dois. Com isso, uma análise da coluna relativa ao número total de deslocamentos, aplicando-se a ela o princípio da recorrência, indicará que sempre temos o dobro da coluna anterior mais um.

A generalização (5) do número total de deslocamentos para 6, 7 ou n discos poderá ser feita nos dois primeiros casos dobrando-se, como já se sabe, os valores, da coluna anterior e acrescentando-se um. Quanto a generalização completa (Piaget, 1978) ou fórmula para n discos pode-se abstrair-la a partir dos aspectos já mencionados: \(n^2 - 1 \), onde n representa o número de discos. Por esse meio, chega-se então à equação solicitada (6).

Depois de tudo isso, podemos fazer algumas considerações sobre como se processa o conhecimento, a partir de nossa experiência com a Torre de Hanói:
1. Na visão de Piaget (1976), o conhecimento é sempre resultado de um processo de construção, em que partindo-se de alguns dados no início e de muito trabalho, via ação determinada e problematizadora, estabelecemos relações de início insuspeitadas, entre os aspectos do sistema em estudo. Neste sentido, o
conhecimento é sempre um processo recíproco e solidário de invenção e descoberta das leis ou elementos que determinam o funcionamento e a estrutura de um sistema. Recíproco, porque se trata de considerar um elemento em relação ao(s) outro(s). Solidário, porque compreender um aspecto implica em conhecer outros que o complementam no sistema. Invenção, porque se trata de criar códigos, testar hipóteses, buscar relações, transformar os observáveis em jogo coordenando-os entre si (por classificação ou relação). Descoberta, porque as leis de composição pertencem ao sistema considerado (Torre de Hanói, no caso), isto é, trata-se de inventarmos regras que correspondam a um objeto que é exterior a nós mesmos. Além disso, a experiência da Torre de Hanói pode nos lembrar que se trata de um conhecimento construído e que melhora, aperfeiçoa-se, incessantemente ao longo do processo. Nestes termos, esta visão de conhecimento opõem-se (cf., por exemplo, Piaget, 1970) a duas outras clássicas: (a) a que concebe o conhecimento como um processo predominantemente exógeno (que depende exclusivamente de aspectos externos — sociais ou naturais — ao sujeito que conhece) ou (b) como um processo predominantemente endógeno (que depende exclusivamente de aspectos internos — biológicos, físicos ou maturacionais — ao sujeito que conhece). Nesta terceira posição, o conhecimento é produto de uma interação constante entre aspectos do sujeito e do objeto, em que cada parte depende da outra, repito, solidária e recíprocamente.

2. Um outro aspecto, que a experiência da Torre de Hanói pode nos levar a considerar em termos do como se processa o conhecimento, diz respeito à solidariedade entre o "fazer" e o "compreender" (Piaget, 1974). Neste jogo, o fazer, no sentido de ter êxito — deslocar uma torre de uma coluna para outra utilizando um número mínimo de deslocamentos — depende do compreender — ter consciência das leis que regulam as relações entre os movimentos de cada uma das peças. É claro que há situações em que o fazer é máximo e o compreender é mínimo (como, por exemplo, no comportamento de crianças pequenas) e outras em que o compreender é máximo e o fazer, mínimo (como, por exemplo, entre adultos que fazem uma Matemática ou Física teóricas). Mas, cedo ou tarde, há exigências para que estas relações se equilibrem. No sentido de aprofundar um pouco nossas reflexões sobre as diferenças entre o fazer e o compreender, transcrevo no quadro abaixo alguns aspectos que distinguem estes dois conhecimentos:

FAZER

- Funcional: dominar objetivos e resultados
- espaço-temporal
- contextual
- busca a eficácia (caráter)
- técnico
- periférico
- conhecimento em extensão (prático)

COMPREENDER

- Estrutural: dominar os meios ou as razões
- a-espalcial e a-temporal
- a-contextual
- busca a verdade (caráter científico)
- central
- conhecimento em compreensão (teórico)

3. O conhecimento processa-se — vím-lo na experiência da Torre de Hanói — por uma dialética "meio-fim" (Piaget, 1970) ou seja, o que é fim em uma situação, torna-se meio na seguinte e, assim, sempre. Em outras palavras, conhecer é aplicar, transferir, generalizar, o que se adquiriu em uma situação para uma outra. No caso da Torre de Hanói, refiro-me ao montar a torre de dois discos na coluna intermediária, para liberar o espaço do disco, na coluna de chegada e, assim, poder montar sobre este, a torre de dois discos. Nestes termos, saber transportar uma torre de três discos, implica em saber montar uma torre de dois! O conhecimento (Piaget, Inhelder, 1966) supõe, assim, um processo de reconstituição (fazer uma torre não importa em que lugar), de descentração (realizar ou pensar algo em diferentes perspectivas) e de cooperação (realizar ou pensar algo de forma solidária, em que os termos estão sempre relacionados entre si).

4. O conhecimento, pudemos experienciá-lo também na torre, processa-se por um princípio de decomposição (Piaget, 1974), de análise: montar uma torre de cinco, implica em montar uma torre de quatro, na coluna intermediária e, para isso, uma de três na coluna de chegada e, para isso, uma de dois, na coluna intermediária.

5. O conhecimento processa-se por um princípio de transitividade (Piaget, 1974/1977): exceto o disco
maior (em qualquer torre) que sempre passa directo da coluna de partida para a de chegada, todos os outros só chegam ali pela via da coluna intermediária, ou seja, não há conhecimento sem um processo de mediação, tal que duas coisas só se relacionam, entre si, pela via de uma terceira. Conhecer é, portanto, inventar/descobrir "pontes".

6. O conhecimento processa-se por um princípio de recorrência (Piaget, 1974) (1): no aspecto seguinte deve-se sempre recorrer ao anterior e, assim, sucessivamente. Quem sabe verdadeiramente transportar uma torre de dois discos, saberá transportar uma de três, basta que saiba recorrer àquela, agora montada na coluna intermediária!

7. O conhecimento processa-se por um princípio de reversibilidade (Piaget e Inhelder, 1966): deve-se considerar simultaneamente todos os aspectos da situação em jogo. Para isso temos que ser capazes de:
- fazer antecipações – considerar em cada movimento todos os outros; caso contrário, agiremos por ensaio e erro e cometeremos um número excessivo e dispensável de deslocamentos; ou seja, quem conhece o primeiro movimento, deve também conhecer o último (em outros termos: os movimentos relacionam-se entre si e são interdependentes);
- ser flexíveis – as três colunas devem ser usadas ou pensadas como podendo ser ao mesmo tempo e no mesmo jogo como de partida, de chegada ou intermediária;
- relacionar a parte com o todo – todos os elementos devem ser incluídos ou excluídos em cada jogada, tal que se possa – parte por parte – efetuar o transporte da torre.

8. O conhecimento enquanto processo de transformação, por intermédio do qual um sistema, no princípio caótico e desconhecido por nós, organiza-se segundo suas leis de composição; por outro lado, depende de um princípio de identidade (Piaget, Sinclair e Bang, 1968). O disco I é sempre o menor, não importa onde esteja; as colunas de partida, intermediária ou de chegada mudam de posição, isto é, ou estão na coluna à direita, no centro ou à esquerda do jogador, mas naquele jogo, não importa o lugar, serão sempre caracterizadas desta forma. As regras são sempre as mesmas e se mudarem, daí para frente – enquanto durar o jogo – manter-se-ão iguais. O movimento dos discos nas torres de número par é sempre o mesmo; idem, para as torres de número ímpar.

Podemos, assim, resumir os ingredientes que possibilitam o conhecimento de algo nos seguintes termos: (a) interação, (b) construção, (c) invenção (enquanto assimilação, transformação, dedução ou implicação), (d) descoberta (enquanto correspondência, acomodação, indução ou explicação), (e) regulação, (f) recorrência, (g) reversibilidade, (h) reconstituição/descentrada/cooperação, (i) decomposição, (j) transitividade/mediação, (l) fazer/compreender, isto é, dialética meio/fim, (m) identidade. Além disso, consideremos que em Piaget os termos abstração (1977) e generalização (1978) sintetizam tudo isto.

Escolhi o sistema Torre de Hanói para descrever aspectos do processo do conhecimento porque penso que, metaforicamente, podemos ver a Escola como uma grande torre (pode-se imaginar as séries como correspondendo a um número crescente de discos). O problema dos educadores é sempre o mesmo: transportar seus alunos de um nível de conhecimento ("coluna de partida") a outro ("coluna de chegada"), usando para isso diversos recursos disponíveis ("coluna intermediária"). Nestes termos, basta-nos, talvez, voltar aos princípios, enumerados acima, e pensá-los agora em termos da escola, em termos de nossa atuação como parte deste sistema. Será que nós ou a escola estamos favorecendo ou dificultando o processo de conhecimento de nossos alunos, razão de ser dela enquanto instituição, e de nós, enquanto profissionais?

REFERÊNCIAS BIBLIOGRÁFICAS

128

ABSTRACT: The article presents the illustration of the author and participants' experience on the psychopedagogy Laboratory under his coordination. The experience consists on the use of games for the analysis (theoretical and educational) of terms of significance for the knowledge process (with emphasis on the Portuguese Language or Mathematics learning problem). The example here presented refers to the game or puzzle "Hanoi Tower" and through it the author analyses some aspects considered by Piaget in his knowledge theory.