PROTECTIVE ELEMENTS OF BREAST MILK IN THE PREVENTION OF GASTROINTESTINAL AND RESPIRATORY DISEASES

ELEMENTOS PROTETORES DO LEITE MATERO NA PREVENÇAO DE DOENÇAS GASTRINTESTINAIS E RESPIRATORIAS

Adriana Passanha¹
Ana Maria Cervato-Mancuso²
Maria Elisabeth Machado Pinto e Silva²

ABSTRACT
Objective: to identify the protective elements of breast milk that work in the prevention of gastrointestinal and respiratory diseases. Sources: the search was performed on Bireme, Lilacs, Medline and Scielo databases, using keywords breast milk, gastrointestinal disease and respiratory disease, with limits of languages (English, Portuguese and Spanish) and period (1996 to 2009). 46 papers were selected for achieving the objectives of this work. Summary of the findings: the IgA is the immunoglobulin with more protective capability against both types of disease, to survive the intestinal and respiratory mucosa. Breast milk also contains other immunoglobulins, antibodies, oligosaccharides, lipids, bioactive peptides, among other components with unique mechanisms that besides the protection against these diseases, stimulate the development of infants’ immune systems. No other milk has these properties, and may even be the cause of these diseases. Campaigns and actions in Public Health to encourage breastfeeding should be continuously developed and encouraged considering all the benefits it provides.

Key words: milk, human; gastrointestinal diseases; respiratory tract diseases; breast feeding.

¹ Nutritionist, improving student in Public Health Nutrition area by School of Public Health – University of São Paulo.
² Professors of Department of Nutrition. School of Public Health – University of São Paulo.
School of Public Health – University of São Paulo.
Departament of Nutrition - Avenida Doutor Arnaldo, 715. Cerqueira César. São Paulo, SP, Brazil. CEP: 01246-904,
Adriana Passanha (principal author): adriana.passanha@gmail.com
Conflict of interest: nothing to declare.
RESUMO

Objetivos: identificar os elementos protetores do leite materno que atuam na prevenção de doenças gastrintestinais e respiratórias. Fonte dos dados: a busca foi realizada nas bases de dados Bireme, Lilacs, Medline e Scielo, utilizando os descritores leite materno, doenças gastrintestinais e doenças respiratórias, com limites de idiomas (português, inglês e espanhol) e de período (1996 a 2009). Foram selecionados 46 materiais para atenderem aos objetivos deste trabalho. Síntese dos dados: A IgA é imunoglobulina com maior capacidade protetora contra ambos os tipos de doenças, por sobreviver às mucosas intestinal e respiratória. O leite materno também possui outras imunoglobulinas, anticorpos, oligossacarídeos, lipídeos, peptídeos bioativos, entre outros constituintes exclusivos com mecanismos específicos que, além da proteção contra essas doenças, estimulam o desenvolvimento do sistema imune do lactente. Conclusões: Nenhum outro leite possui essas propriedades, e podem até ser a causa destas doenças. Campanhas e ações em Saúde Pública que incentivam o aleitamento materno devem ser continuamente desenvolvidas e estimuladas, considerando todos os benefícios que o mesmo proporciona.

INTRODUCTION

Breastfeeding is one of the earliest nutritional experiences of the newborn child\(^1\). No other food or modified formula is able to provide the infant with all the ingredients of breast milk. Breast milk has a specific composition that meets the nutritional needs of infants and is compatible with their metabolic and physiological limitations\(^2,3\). Furthermore, breast milk represents no additional cost to the family budget\(^4,5\).

The frequency and duration of breastfeeding have risen favorably over the past 30 years\(^6\). Despite this positive trend, consensus on the numerous advantages of breastfeeding, and the global movement to recover the culture of breastfeeding in recent decades, early weaning remains a common practice worldwide\(^7,8\).

The indices of the frequency and duration of breastfeeding do not reflect the efforts of numerous governmental and non-governmental programs to foster breastfeeding throughout Brazil\(^9\). Only 35% of infants under four months old are exclusively breastfed and early weaning continues to be still associated with high rates of infant mortality due to malnutrition and diarrhea\(^8\).

Recent estimates regarding the various forms of action and their repercussions on child health have shown that the promotion of exclusive breastfeeding is potentially the single most effective public health intervention for reducing child mortality\(^10\) since exclusive breastfeeding contributes toward lowering both child morbidity and mortality\(^11\). According to Betrán et al.\(^12\), 13.9% of all causes of infant mortality in Latin America are preventable by exclusive breastfeeding in infants aged 0-3 months, and by partial breastfeeding during the first year of life.

In Brazil, most mothers start out breastfeeding but by the first month of life more than half of the infants are no longer being exclusively breastfed. This early weaning goes against WHO\(^13\) guidelines recommending exclusive breastfeeding for at least the first six months of life\(^5\).

The first two years of life is a critical period for promoting optimal growth, he-
Protective elements of breast milk in the preventions

Health and development of the infant. Breastfeeding is an excellent means of ensuring that children go through this vulnerable period of life, allowing normal future development\(^4\) and preventing against disease during childhood and into adult life\(^5\).

Breastfeeding confers numerous health benefits for the child, representing the best way of promoting full development since breast milk supplies all the nutrients a child needs to make the healthiest start in life\(^6\). Human milk fully meets the needs of the infant up to the sixth month of life\(^7,8\), and is one of the most efficient means of meeting their nutritional and immunological requirements during the first year\(^9\).

Besides having the ideal composition of nutrients, breast milk contains other components that strengthen organism defenses such as immunoglobulins, anti-inflammatory factors and immunostimulators. Their mechanisms include specific activity against infectious agents and cell growth of intestinal mucosa which increases resistance to infections\(^2,3\). Reports describe approximately 250 protective components in human milk, besides growth factors of the gastrointestinal tract\(^10\).

Breastfeeding decreases the incidence and/or severity of diarrhea, botulism, necrotizing enterocolitis, allergies, infectious and respiratory diseases, and of other types of diseases\(^5,11,12,20,21\) such as autoimmune diseases\(^20\), while also encourages development of the baby’s immune system\(^8\).

Other types of milk increase the risk of developing diseases and allergies\(^17\) and can cause damage to the immature infant gut\(^22\). The entry point of most infections in humans is mucosal surfaces, especially gastrointestinal and respiratory tracts. Through feeding and breathing, the organism comes into contact with pathogenic microorganisms as well as potentially allergenic or harmful substances\(^23\). Exclusive breastfeeding saves millions of children every year by preventing acute and chronic infectious diseases, especially respiratory and intestinal diseases\(^7\).

In view of the numerous beneficial effects of exclusive breastfeeding and the protection it confers against various diseases, the aim of this study was to identify the protective elements of breast milk that help prevent against gastrointestinal and respiratory diseases.

METHOD

The present study consisted of a literature review of the subject based on information obtained through systematic screening of the literature by the Boolean technique using the *and* operator together with the following key words: *leite materno* and *doenças gastrintestinais*, as well as *leite materno* and *doenças respiratórias*. The search was based on research sources including publications and the specific search databases Bireme, Lilacs, Medline and Scielo. The scope of the search was limited in terms of language of publication (Portuguese, Spanish and English) and publication date (1996-2009).

Using these screening criteria, the search yielded 302 articles. Of these articles, 46 met the study inclusion criteria and were therefore selected.

PROTECTIVE ELEMENTS OF BREAST MILK

Newborns and infants are more vulnerable to infections, especially during the first six months of life, due to immaturity of the immune system and greater intestinal permeability. Thus, during this critical period of relative immunologic incompetence, human milk has valuable attributes to help meet infants’ immunobiological needs and protect them from a range of diseases\(^2,23,24\).

Neither chronological age nor nutritional status of mothers has a significant influen-
ce on the concentrations of total proteins, albumins, IgG and IgA present in their colostrum25. The mammary gland appears to have specific mechanisms to regulate the concentration of trace elements in the milk, even under specific conditions of a variable maternal diet26.

However, the composition of the milk from mothers of premature newborns differs in that it promotes greater anti-inflammatory effects than milk from mothers with term newborns27. This different composition can provide immunoprotection by inducing maturation of the gut in premature infants27 given that preterm infants have a higher risk of developing complications in the gastrointestinal and respiratory tracts28. The nutritional and anti-infectious properties of milk from mothers of preterm infants cater to the physiological and immunological needs of the immature gut of the newborn, containing greater amounts of IgA, lysozyme and lactoferrin2.

The anti-infective properties of human milk comprise soluble and cell components. The soluble components include immunoglobulins IgA, IgM, IgD, IgE, IgG, predominantly IgA, lysozyme, lactoferrin, components of the complement system (C’3, C’4), bioactive peptides, oligosaccharides, and lipids (antistaphylococcal factor and inactivation virus). The immunologically active cell components consist of polymorphonuclear phagocytes, lymphocytes, macrophages, nucleotides, plasma cells, and epithelial cells2,18,27,29,30,31,32.

Human milk also contains lactoperoxidase which oxidizes bacteria with antimicrobial action18,29. Macrophages and lymphocytes are responsible for phagocytosis and the production of complement factors27.

The antibodies present in breast milk target numerous microorganisms which the mother was exposed to throughout her life, representing a kind of immunological “repertoire”. Most of these microorganisms had previously come into contact with the mucosal surfaces of the mother’s gastrointestinal or respiratory tracts20.

Besides antibodies, human colostrum contains many immunocompetent cells and biochemical factors. These interact with each other and with the mucosa of the digestive and respiratory tracts of infants, providing not only passive immunity, but also stimulating the development and maturation of the neonate’s mucosal immune system11.

Glycoconjugates and oligosaccharides display anti-adherent activity for many microorganisms that cause gastrointestinal and respiratory diseases23. Cow’s milk has no immune component beneficial to infants27 and the introduction of food or pre-milk supplements increases the risk of infections in infants4.

GASTROINTESTINAL DISEASES

In 1989, the year of publication of the study by Brown et al.3, it was known that pacifier use and the administration of teas and other non-nutritious fluids to infants, besides provoking early weaning, predisposed infants to the onset of diarrhea due to exposure to risk of contamination.

The prolongation of breastfeeding is especially beneficial at the end of the first and second years of life when the incidence of diarrhea reaches its highest17. The presence of milk in the intestinal lumen stimulates the development of its mucosa17,28 and the activity of the enzyme lactase34. According to the review by Toma & Rea10, exclusively breastfed infants had lower morbidity from diarrhea compared with those who were fed on breast milk in combination with complementary foods at 3-4 months.

From the first hours of life, different strains of *Escherichia coli* colonize the human gut, becoming part of its normal flora. However, some of these strains can cause severe intestinal disease21. In neonates, the immaturity
of the intestinal epithelium, low gastric acidity and lower activity of digestive enzymes limit the effectiveness of the barrier against the entry of microorganisms

Since the 1970s, following the discovery of the bifidus factor, the mechanism by which the intestinal mucosa is protected against pathogenic agents has become elucidated. Several types of oligosaccharides and glycoconjugates in breast milk (known as prebiotic agents) stimulate the colonization of the gut by beneficial microorganisms. These agents act in the first essential step of pathogenesis by preventing microorganisms from attaching to cell walls

Exclusively breastfed infants have beneficial intestinal flora with higher bifidobacteria and lower Clostridium difficile and Escherichia coli, according to Penders et al. In their study, which examined the feces of 1032 Dutch infants up to one month old, infant feeding was found to be a major determinant of intestinal microflora in early life. Records from as early as 1905 describe differences in the composition of intestinal microflora in breastfed children compared to weaned children.

Carbohydrates present in human milk include oligosaccharides and lactose. The oligosaccharides, in the presence of peptides, form a bifidus factor (carbohydrate with dialysable nitrogen). In the lactose-rich environment, this produces lactic acid and succinic acid, lowering intestinal pH and creating conditions conducive for the growth of pathogenic bacteria, fungi and parasites. Thus, lactose also exerts a protective effect against the development of gastrointestinal disorders by promoting this beneficial colonization

These nitrogen oligosaccharides allow population by the bifid flora which prevents, through selective action, new recent bacteria to the intestinal lumen and potential pathogens of diarrhea such as E. coli, among other enterobacteria, from colonizing the intestinal tract

Mucin is a protein found in colostrum which binds to fat globules and whose main function is to inhibit bacterial adhesion to the intestinal epithelium

Some polyunsaturated fats such as linoleic and arachidonic acids are important for the syntheses of the prostaglandins involved in biological functions active in digestion and intestinal cell maturation, decreasing the prevalence of intestinal allergy and boosting infant defenses. The lipids present in human milk are hydrolyzed into fatty acids and mono- and diglycerides that act against some types of viruses, bacteria and protozoa

Nucleotides, glutamine and lactoferrin present in breast milk influence gastrointestinal development and the body’s defenses. Glutamine acts as the principal fuel for the growth of intestinal epithelium during periods of stress

One of the functions of lactoferrin is to chelate iron ions, which are essential for the multiplication of pathogenic microorganism, thereby decreasing their bioavailability in the intestinal microenvironment, a process favored by the presence of bicarbonate in human milk. Lactoferrin is found intact in both feces and urine of breastfed infants, and may thus exert a systemic protective role

Lysozyme is an enzyme with bactericidal action, interacting synergistically with lactoferrin and IgA. Protection against gastroenteritis results in a lower incidence of diarrhea due to the presence of IgA antibodies in breast milk which are reactive against pathogens and toxins

IgA is the main immunoglobulin in colostrum. It is present in the intestines of infants fed human milk, and prevents the invasion and adhesion of viruses and bacteria in the intestinal mucosa, and also neutralizes toxins and virulence factors

The main action of IgA is to bind to macromolecules and microorganisms, inhibiting the interaction between bacteria and epi-
Protective elements of breast milk in the preventions

Epithelial cells and impeding their adherence to mucosal surfaces thereby preventing contact of pathogens with the epithelium. Thus, IgA protects the mucosa against diarrhea by forming a protective coating on mucosal surfaces in infants.

IgA antibodies incolostrum survive the gastrointestinal tract of the newborn and can be found intact in feces, retaining the same reactivity against antigens they displayed in the mother’s colostrum, and preserving their anti-infective activity throughout the gastrointestinal tract of the newborn. The peculiar structure of IgA confers this class of antibodies with greater resistance to the action of proteolytic enzymes which are abundant in mucous secretions.

The other immunoglobulins are found in colostrum and human milk, albeit at much lower concentrations than IgA. IgM is the second most abundant of these immunoglobulins. In the event of insufficient IgA in breast milk, IgM acts as a compensatory mechanism. Consequently, IgM antibodies may play an important role in defending the mucosal surfaces in infants.

In the course of lactation, even with the decline in secretion of IgA in breast milk, the biological activity of inhibition of bacterial adhesion remains unchanged. This finding is consistent with the fact that children remain protected from gastroenteritis throughout the entire period of breastfeeding. Diarrhea is more prevalent after weaning, regardless of age of onset. Therefore, these data serve to highlight the importance of breast milk in premature and small for gestational age infants.

The casein in human milk is also one of several constituents that helps protect the child from gastrointestinal infections by preventing bacteria adherence to cells of the intestinal mucosa.

SECRETORY IgA

Secretory antibodies reactive against the virulence factors of some bacteria are able to inhibit bacterial adhesion to the intestinal mucosa and thus prevent the colonization of the host and impede the chain of events that would ultimately culminate in infection and diarrhea. This is an important protection mechanism conferred by breast milk that prevents various infections initiated by the adherence of microorganisms to mucosal surfaces.

RESPIRATORY DISEASES

Exclusive breastfeeding protects infants against progression to severe respiratory infection. The practice of breastfeeding for between six months and one year of age may also reduce the prevalence of respiratory infections in childhood. Breast milk is able to reduce both intestinal exposure and absorption of allergens responsible for respiratory diseases.

The protective effects of breastfeeding against both ear and lung infections have become more evident in recent years. Secretory IgA, an antibody resulting from the mother’s response to prior exposure to infectious agents, plays a particularly important role. It is characterized by being able to survive in the membranes of the respiratory mucosa and by its resistance to proteolytic digestion. Besides preventing pathogens from establishing in the cells of the breastfed infant, IgA attenuates the damaging effects of the inflammatory process.

Cytokine concentrations have a key role in the immunogenicity of milk. The IL-4, IL-5 and IL-3 cytokines, principally involved in the production of IgE and induction of eosinophil response, may protect infants against respiratory diseases. The transforming growth factor beta, a cytokine predominant in human milk, enhances the infant’s ability to produce IgA.

The oligosaccharides block pneumococci through receptor cells of the pharynx. Several types of antibodies protect against the viruses that cause bronchitis. Lipids and some macroglobulins possess antiviral action, pro-
Protecting the infant against the *influenza* virus. These macroglobulins also protect the newborn from causative agents of acute respiratory infection.

Soluble CD14 is present in high concentrations in breast milk and has an important role in the induction of helper T lymphocyte response to bacteria, and may also protect against the development of allergies. The high level of cationic eosinophil protein also confers this protection. Lymphocytes protect infants against respiratory diseases, especially asthma.

Breastfeeding also decreases the involution of the thymus gland during childhood, which in turn stimulates the effects of T cells, protecting the infant from respiratory diseases.

CONCLUDING REMARKS

Breast milk is the only food that can protect infants from various diseases in the first months of life because it is rich in nutritional and immunological compounds that confer this protection. Other types of milk, formula or food are not only devoid of these protective compounds but can also cause diseases in the newborn.

Campaigns and actions in Public Health that foster breastfeeding should be continuously developed and encouraged in light of the numerous benefits of this practice.

Recebido em 14 de março de 2009
Modificado em 26 de novembro de 2009
Aceito em 14 de janeiro de 2010