SciELO - Scientific Electronic Library Online

 
vol.11 issue2Neuropsychological intervention with children and adolescents - a review of the literatureBrain and behavior: on the perspective of Miguel Covian and César Timo-Iaria author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

article

Indicators

Share


Revista Psicologia e Saúde

On-line version ISSN 2177-093X

Abstract

YAMAMOTO, Tetsuya; YOSHIMOTO, Junichiro; MURILLO-RODRIGUEZ, Eric  and  MACHADO, Sergio. Predição da felicidade diária usando aprendizado supervisionado de registro de dados multimodais de vida. Rev. Psicol. Saúde [online]. 2019, vol.11, n.2, pp.145-152. ISSN 2177-093X.  https://doi.org/10.20435/pssa.v11i2.823.

Desenvolver uma abordagem para prever a felicidade com base em condições e ações individuais pode nos permitir selecionar comportamentos diários para melhorar o bem-estar na vida. Portanto, propomos uma nova abordagem de aplicação da aprendizagem de máquina, um ramo do campo da inteligência artificial, para uma variedade de informações sobre a vida das pessoas (ou seja, um lifelog). Pedimos a um participante (um jovem saudável) que registrasse 55 itens de vida útil (por exemplo, humor positivo, eventos negativos, tempo de sono etc.) em sua vida diária por cerca de oito meses usando aplicativos de smartphones e um relógio inteligente. Em seguida, construímos um preditor para estimar o grau de felicidade dos dados de vida multimodal usando uma máquina de vetores de suporte, que atingiu 82,6% de precisão de previsão. Isso sugere que nossa abordagem pode prever os comportamentos que aumentam a felicidade dos indivíduos em suas vidas diárias, contribuindo para uma melhoria em sua felicidade. Estudos futuros examinando a usabilidade e a aplicabilidade clínica dessa abordagem se beneficiariam de um tamanho de amostra maior e mais diversificado.

Keywords : aprendizado de máquina; log de vida; inteligência artificial; felicidade.

        · abstract in English | Spanish     · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License