SciELO - Scientific Electronic Library Online

vol.11 número2Intervención neuropsicológica con niños y adolescentes - una revisión de la literaturaCerebro y comportamiento: la perspectiva de Miguel Covian y César Timo-Iaria índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Revista Psicologia e Saúde

versión On-line ISSN 2177-093X


YAMAMOTO, Tetsuya; YOSHIMOTO, Junichiro; MURILLO-RODRIGUEZ, Eric  y  MACHADO, Sergio. Prediction of daily happiness using supervised learning of multimodal lifelog data. Rev. Psicol. Saúde [online]. 2019, vol.11, n.2, pp. 145-152. ISSN 2177-093X.

Developing an approach to predict happiness based on individual conditions and actions could enable us to select daily behaviors for enhancing well-being in life. Therefore, we propose a novel approach of applying machine learning, a branch of the field of artificial intelligence, to a variety of information concerning people's lives (i.e., a lifelog). We asked a participant (a healthy young man) to record 55 lifelog items (e.g., positive mood, negative events, sleep time etc.) in his daily life for about eight months using smartphone apps and a smartwatch. We then constructed a predictor to estimate the degree of happiness from the multimodal lifelog data using a support vector machine, which achieved 82.6% prediction accuracy. This suggests that our approach can predict the behaviors that increase individuals' happiness in their daily lives, thereby contributing to improvement in their happiness. Future studies examining the usability and clinical applicability of this approach would benefit from a larger and more diverse sample size.

Palabras clave : machine learning; lifelog; artificial intelligence; happiness; behavior.

        · resumen en Español | Portugués     · texto en Inglés     · Inglés ( pdf )


Creative Commons License