SciELO - Scientific Electronic Library Online

 
vol.33 número3Análise da incidência, mortalidade e letalidade por COVID-19 nos Estados do Pará e Rio Grande do Sul, Brasil: aspectos epidemiológicos da evolução 2020-2022Life purpose before and during the COVID-19 pandemic in elderly physical activity practitioners in the interior of Amazonas State: a longitudinal study índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Compartir


Journal of Human Growth and Development

versión impresa ISSN 0104-1282versión On-line ISSN 2175-3598

J. Hum. Growth Dev. vol.33 no.3 Santo André set./dec. 2023  Epub 20-Ene-2025

https://doi.org/10.36311/jhgd.v33.15422 

ORIGINAL ARTICLE

Relationship between quality of life and sociodemographic, clinical and lifestyle characteristics of patients undergoing hemodialysis

Marina Abelha Barreto, All authors contributed to the manuscript, Participated in data collection, data analysis, statistical analysis and writing of the texta 

Monica Cattafesta, All authors contributed to the manuscript, Participated in the study design, statistical analysis and final version of the textb 

Alexandre Cardoso da Cunha, All authors contributed to the manuscript, Participated in data collection and revision of the textc 

Mirian Patricia Castro Pereira Paixão, All authors contributed to the manuscript, Participated in data collection and revision of the textd 

Edson Theodoro dos Santos Neto, All authors contributed to the manuscript, Participated in the general orientation of the research, definition of the study design and final revision of the texte 

Luciane Bresciani Salaroli, All authors contributed to the manuscript, Participated in the general orientation of the research, definition of the study design, statistical analysis, discussion of results and final version of the texta  e 

aPostgraduate program in nutrition and health, Health Science Center, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brasil.

bPostgraduate program in Public health, Health Science Center, University, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brasil.

cDepartment of occupational therapy, Health Science Center, University, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brasil.

dSalesiano University Center, Vitória, Espírito Santo, Brasil.

eDepartment of public health, Health Science Center, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brasil.


Authors summary

Why was this study done?

In Brazil, chronic kidney disease increases every year. Due to the various factors that affect the health of hemodialysis patients, low quality of life has become one of the main problems in this population, becoming a measure of health outcome. In this study, we evaluated socioeconomic factors, lifestyle and clinical factors in order to identify predictors of quality of life in this population.

What did the researchers do and find?

This is a cross-sectional study carried out in 11 hemodialysis centers in a metropolitan region of Brazil, which included 1024 patients. Most individuals had less than 8 years of education (n=523, 51.62%), were of mixed race/color (n=496, 49.06%), and had family income between 1 and 2 minimum wages (n=441, 43.70%) and used the public health system (n=774, 75.65%). We highlight male gender, education and family income as the main factors associated with better quality of life. We also highlight the difference between age groups in the influence on physical and mental health.

We identified the practice of physical activity as one of the most important predictors of quality of life, while the number of complications was shown to be a predictor of worse quality of life.

What do these findings mean?

We emphasize with the results of this study that the identified predictors are important for clinical monitoring in this population, avoidable factors that can significantly interfere in the physical and mental health of these individuals.

Key words: Chronic kidney disease; Quality of life; Lifestyle; Socioeconomic conditions; Clinical characteristics; Hemodialysis

Abstract

Introduction

In chronic diseases, QoL depends on several factors such as the type and duration of the disease, its treatment and side effects, the severity of symptoms, medication effects, patient age, limitations and self-care capacity. In chronic kidney disease it has also become a measure of health outcome.

Objective

assess the association between QoL and socioeconomic, lifestyle and clinical factors of patients on HD.

Methods

This is a cross-sectional epidemiological census, carried out among 1,024 patients on hemodialysis from all hemodialysis units at the metropolitan region in the Espirito Santo’s, Brazil . Sociodemographic, lifestyle and clinical characteristics data were used. QoL was assessed using the Short-Form health Survey-36 (SF-36). Data were analysed by multiple linear regression.

Results

The best QoL was represented by mental health (72.16) and the worst QoL by the physical aspect (26.78). After multiple linear regression, predictors of QoL were identified, with emphasis on males, a predictor of better QoL for 5 of the 8 domains and the summaries of the physical and mental components. Education, associated with 5 domains, gives greater reference to income. Physical activity was a predictor of 7 of the 8 QoL domains and the summary of the physical component. Among the clinical variables, the number of complications is associated with 7 of the 8 domains and summaries of the physical and mental components.

Conclusion

Male sex is highlighted as a predictor of better physical and mental health and elderly people with better mental health, despite the impairment in physical health. The absence of physical activity is associated with worse physical and mental health. Clinically, having 3 or more intradialytic complications was associated with worse physical and mental QoL.

Key words: Chronic kidney disease; Quality of life; Lifestyle; Socioeconomic conditions; Clinical characteristics; Hemodialysis

Highlights

Among the main socioeconomic predictors identified, we highlight male gender, education and family income as the main factors associated with better quality of life.

Clinically, having 3 or more intradialytic complications was associated with worse physical and mental QoL.

The practice of physical activity was identified as one of the most important predictors of quality of life, while the number of complications was shown to be a predictor of worse quality of life.

Key words: Chronic kidney disease; Quality of life; Lifestyle; Socioeconomic conditions; Clinical characteristics; Hemodialysis

Resumo

Introdução

nas doenças crónicas, a QV depende de vários fatores como o tipo e duração da doença, o seu tratamento e efeitos secundários, a gravidade dos sintomas, os efeitos da medicação, a idade do paciente, as limitações e a capacidade de autocuidado. Na doença renal crónica também se tornou uma medida dos resultados de saúde.

Objetivo

avaliar a associação entre QV e fatores socioeconômicos, de estilo de vida e clínicos de pacientes em HD.

Método

trata-se de um censo epidemiológico transversal, realizado entre 1.024 pacientes em hemodiálise de todas as unidades de hemodiálise da região metropolitana do Espírito Santo, Brasil. Foram utilizados dados sociodemográficos, de estilo de vida e características clínicas. A QV foi avaliada por meio do questionário de Qualidade de Vida (SF-36). Os dados foram analisados por regressão linear múltipla.

Resultados

as crianças tinham idade média de 8,36 anos, sendo 82% de eutróficas e com tempo médio de tela de duas horas diárias. As análises do controle postural revelaram que as crianças apresentaram maiores ajustes posturais com os olhos fechados em comparação com os olhos abertos e ao usar o aplicativo do smartphone o ajuste postural foi semelhante ao encontrado com olhos fechados. Na estabilometria, os deslocamentos posturais realizados pelas crianças se comportaram de modo semelhante à avaliação estática apenas na área total da superfície dos pés.

Conclusão

o sexo masculino é destacado como preditor de melhor saúde física e mental e idosos com melhor saúde mental, apesar do comprometimento na saúde física. A ausência de atividade física está associada a pior saúde física e mental. Clinicamente, ter 3 ou mais complicações intradialíticas foi associado a pior qualidade de vida física e mental.

Palavras-Chave: Doença renal crônica; Qualidade de vida; Estilo de vida; Condições socioeconômicas; Características clínicas; Hemodiálise

INTRODUCTION

In recent decades, non-communicable chronic diseases have reached epidemic proportions and consolidated Chronic Kidney Disease (CKD) as an important public health problem1,2, substantially contributing to the burden of the disease in the world, since CKD presents diabetes and hypertension as the main causes2,4.

It is estimated that 9% of the world population has CKD2. In Brazil, 8% of the population has some degree of the disease, with an increase of 34.78% of individuals on dialysis in 10 years, corresponding to 133,464 individuals4. Of this total, 92.30% undergo hemodialysis (HD)4.

The benefit of HD in prolonging the patient’s life and improving the clinical picture is known, however, patients on HD are subject to hemodynamic and metabolic changes, due to numerous factors, from disorders caused by the disease itself to side effects of treatment and medications5, in addition to daily activities and social changes6. Such changes severely impact the Quality of Life (QoL) of this population7-9.

In the health area, QoL is aimed at the perception of physical, psychological and social limitations, influenced by the disease, treatment and other health problems10. With the increase in chronic diseases and life expectancy, QoL has gained greater importance, in addition to being a predictor of mortality in patients with CKD111,12. It has also become a measure of health outcome13.

In chronic diseases, QoL depends on several factors such as the type and duration of the disease, its treatment and side effects, the severity of symptoms, medication effects, patient age, limitations and self-care capacity9. Add to this, the social inequality, an important problem in Brazil, which both predisposes to CKD and worsens the outcomes of those with the disease14. In this scenario, the socioeconomic level becomes a determinant of QoL. Added to the low level of education, the observed social inequality is closely related to the QoL of this population16,17.

Although the relationship between Low QoL and CKD is well established18-20, it can be deepened through the biopsychosocial model that concerns the commitment of each biological, social and clinical domain that affects the quality of life of these individuals21. Mainly because this approach can help in understanding the various aspects involving CKD, hemodialysis treatment and social support, as well as their impact on the well-being of individuals with CKD. Therefore, to identify QoL predictors of patients on HD, it is imperative to consider the multidimensionality that involves the topic. In addition to sociodemographic variables, we also studied life habits and clinical characteristics, including disease time since diagnosis, years of HD treatment, number of medications and complications, variables little explored in their correlation with the dimensions of QoL. Thus, the aim of this study is to assess the association between QoL and socioeconomic, lifestyle and clinical factors of patients on HD.

METHODS

Study Design

This was a cross-sectional epidemiological census.

Study Location and Period

The study was carried out from February to September 2019. The study was conducted in all hemodialysis units at the metropolitan region in the Espirito Santo’s, Brazil and a total of 1351 individuals underwent hemodialysis at the time.

Study Population and Eligibility Criteria

Individuals of both sexes, over 18 years old, undergoing HD at the metropolitan region of Espirito Santo and having a confirmed diagnosis of CKD in the medical record, were included in the study. Were excluded individuals in contact precautions, those who were hospitalized, those with speech or hearing impairment, and those transferred to clinics located outside the metropolitan region. Of the 1351 individuals in the hemodialysis units, 304 patients were excluded because they met the exclusion criteria (137 were in contact precaution, 74 were hospitalized, 40 had mental confusion and 53 had severe communication impairments). Only 23 (2.2%) individuals refused to participate in the research. Thus, the study population consisted of 1024 individuals.

Data Collection

Data collection took place on the premises of the hemodialysis units, during the period of the permanence of the individual in the health service. A face-to-face interview was conducted for administration of the questionnaires, which were applied in Portuguese.

To assess socio-demographic, clinical and life habits data, during the hemodialysis session, individuals answered a semi-structured questionnaire about socio-demographic, clinical and life habits characteristics. Socio-demographic characteristics included sex, age group, education, marital status, race/color, family income, occupation, and health care. Clinical characteristics included CKD time (period of diagnosis of CKD), HD time (period in HD treatment), number of medicaments, diseases and complications. Life habits included alcohol consumption, current physical activity and smoking load (number of cigarettes consumed per day, multiplied by years of smoking and divided by 20) as there is no consensus in the literature, it was considered a high smoking load above 1022. Physical activity was self-reported by the patients and it was considered the recommendation of the World Health Organization (WHO) of the practice of 150 minutes/week, for classification. Which patient reported his time of physical activity and later classified as “yes” for those who practiced physical activity at least 150 minutes a week, “no” for those who did not practice or “occasionally” for those who practiced less than 150 minutes/week22.

QoL was assessed using the 36-Item Short Form Health Survey (SF-36) questionnaire, which was applied during the hemodialysis session. It is a questionnaire translated, validated, and culturally adapted for the Brazilian population by Ciconelli et al. (1999)24. The SF-36 is a multidimensional questionnaire, formed by 36 questions, comprising 8 domains: physical functioning, role physical functioning, bodily pain, general health perception, vitality, social functioning, role emotional functioning and mental health, which can be categorized in two dimensions: physical component summary and mental component summary25. In the present study, the eight domains of QoL and the two components were used. The score for each domain ranges from 0 to 100, so the higher the score, the better the QoL.

To assess reproducibility e reliability of the QoL questionnaire (SF-36) a pilot study was carried out. The collection of data for the pilot study occurred in January 2019 and included an analysis of the information of 57 patients on hemodialysis at a center that was different from the ones in the present study, but following all the methodological criteria presented. The pilot test was divided into two moments—test and retest—with a difference of 15 days between them and in which SF-36 was applied to the same patients, at both times. The test and retest analyses were performed using the Kappa coefficient and McNemar’s test. The WinPepi (PEPI for Windows) and SPSS Statistics for Windows, version 22.0 (IBM Corp, Armonk, New York, United States of America) programs were used, and the confidence interval adopted was 95% and p < 0.05.

The results of the adjusted Kappa ranged from 0.80 to 1.00, showing high agreement of the questionnaire in both moments. In the McNemar test, values of p > 0.05 were obtained, demonstrating high agreement and low disagreement with the SF-36, and characterizing its good reproducibility. The reliability of the SF-36 questionnaire for the study population was confirmed by means of Cronbach’s alpha coefficient, which ranged from 0.72 to 0.89.

Data Analysis

The variables of the study were described as means and standard deviations or percentages. To check the normality of the quantitative variables, the Kolmogorov-Smirnov normality test was performed. As all variables were classified as non-parametric, the Mann-Whitney U test was used for variables with two categories and the Kruskal-Wallis test when the variable had three or more categories. To identify the differences, the Mann-Whitney U test was performed two by two. To test the associations between the independent variables and QoL, multiple linear regression was used. The variables that showed statistical significance in up to 20% in the Mann-Whitney U and Kruskal-Wallis tests were analyzed by regression. Adjustment variables were used in the regression analyses, they included socio-demographic variables: gender, age group, education, marital status, race/color, family income, occupation, and health care. Lifestyle variables: physical activity, alcoholism and smoking load, and clinical variables: HD time, CKD time, diseases and complications.

For all analyses, the level of significance adopted was 5% and performed using the statistical software IBM SPSS statistics version 22.0 (IBM Corp, Armonk, NY, USA).

Ethical and Legal Aspects of the Research

The study was approved by the Research Ethics Committee of the Federal University of Espírito Santo (UFES) under number 2.104.942.

RESULTS

Of the 1,024 individuals in the study, the average age was 54.7±14.7 years and most individuals (51.56%) were aged between 30 and 59 years.

According to the sociodemographic profile, most individuals had less than 8 years of education (n=523, 51.62%), were of mixed race/color (n=496, 49.06%), and had family income between 1 and 2 minimum wages (n=441, 43.70%). Most were retired or on leave due to chronic kidney disease (n=547, 54.21%), and used the public health system (n=774, 75.65%).

QoL assessed by the SF-36 domains, showed that the lowest score was physical functioning (26.78) and the highest score was mental health (72.16). Regarding the physical and mental components summaries, a higher score was obtained for the mental component summary (47.98) when compared to the physical component summary (35.19).

Table 1 shows the sociodemographic data according to the 8 domains and 2 components of QoL.

Table 1 : Association of Quality of Life and sociodemographic characteristics of patients on hemodialysis in a metropolitan region of Southeastern Brazil. 

Variables PF RPF BP GH VT SF REF MH PCS MCS
All (n=1024) 46,04 26,78 63,47 48,21 53,76 67,98 42,41 72,16 35,19 47,98
Sex (n)
Female (443) 39,3±27,1 21,4±34,4 56,7±31,3 46,3±22,5 49,5±22,5 63,6±28,0 39,4±43,6 67,7±22,3 32,9±9,7 46,5±11,4
Male (581) 51,0±29,6 30,8±37,0 68,5±29,2 49,5±23,3 56,9±21,7 71,6±27,1 44,4±44,7 75,5±20,0 36,8±9,6 49,0±10,7
p value <0,001 <0,001 <0,001 0,046 <0,001 <0,001 0,092 <0,001 <0,001 0,001
Age group* (n)
19 - 29 years (59) 69,2±26,2a, b 42,7±42,0 d,e 66,3±30,4 49,2±23,6 57,2±26,8 67,9±31,9 54,2±45,0 68,6±24,1 41,4±9,5i, j 45,9±13,6
30 - 59 years (528) 50,2±28,2a, c 25,6±35,7 d 61,0±30,5f 45,6±22,5g 52,2±22,5 66,9±27,4 41,2±44,0 70,5±21,8 h 35,4±9,7i, k 46,8±10,9l
≥ 60 years (437) 37,7±27,9b, c 25,8±35,5 e 66,0±30,7f 51,1±23,2g 55,0±21,4 69,6±27,6 41,9±44,3 74,5±20,3 h 34,0±9,7j, k 49,6±10,7l
p value <0,001 0,005 0,029 0,001 0,053 0,234 0,097 0,011 <0,001 0,001
Education*1 (n)
≤ 8 years (523) 40,1±28,1a, b 23,8±34,6 c 62,0±30,8 d 48,4±23,4 51,8±22,2 f 68,5±28,2 g 37,3±43,5 i, j 71,0±22,3 34,0±9,6 k l 47,6±11,33
> 8 ≤ 11 years (332) 51,7±28,8a 30,3±38,1c 66,8±30,1d, e 48,6±22,8 57,5±21,6 f 69,8±26,9 h 47,6±45,3 i 74,4±19,7 36,5±9,9 k 49,0±10,6
> 11 years (158) 54,2±28,4b 28,3±36,3 59,4±31,0e 45,4±22,0 51,8±23,5 63,3±28,3 g, h 46,8±42,5 j 70,8±21,4 35,8±10,5 l 46,7±11,4
p value <0,001 0,025 0,025 0,296 0,001 0,05 0,001 0,144 0,001 0,078
Marital Status* (n)
With partner (570) 46,8±28,5 27,4±36,1 64,7±30,0 48,2±22,5 54,5±21,9 69,2±27,0 44,1±44,6 73,0±21,1 35,3±9,4 48,5±11,0
Without partner (54) 44,9±30,0 25,8±36,3 61,8±31,5 48,1±23,6 52,8±22,9 66,7±28,7 40,0±43,8 71,0±21,7 34,9±10,4 47,3±11,1
p value 0,235 0,341 0,169 0,939 0,191 0,215 0,146 0,122 0,291 0,068
Race/Color*2 (n)
White (274) 45,5±30,3 28,9±37,6 65,9±30,1 47,7±22,8 53,6±22,7 68,4±28,6 48,9±44,6a, b 72,1±22,0 35,2±10,2 48,7±11,4
Black (241) 44,5±28,5 24,8±35,3 63,1±30,3 48,9±22,1 53,4±20,8 70,2±27,2 39,4±43,2a 73,7±20,1 34,7±9,4 48,4±10,5
Brown-skinned (496) 46,6±28,8 26,6±36,0 61,9±31,07 47,6±23,5 53,6±22,9 66,7±27,7 39,6±44,2b 71,1±21,6 35,2±9,8 47,1±11,1
p value 0,586 0,504 0,22 0,747 0,922 0,20 0,011 0,343 0,871 0,112
Family Income*3 (n)
No income (114) 38,9±27,0 a,b 18,6±31,3 e,f 57,7±31,7 i,j 45,1±24,8 51,0±26,1 m 61,3±30,6 p,q 37,7±43,79 t 71,3±24,4 32,2±8,3 x, y,z 47,2±12,0
1-2 basic salary (441) 44,2±27,8 c,d 23,6±34,3 g,h 61,6±30,1 k,l 47,5±22,4 52,1±20,5 n,o 66,9±27,0 r,s 39,1±43,6 u 69,6±20,8 v,w 34,6±9,7 x,a1,a2 46,9±11,0 a3, a4
2-5 basic salary (299) 49,0±30,4 a,c 30,1±38,0 e,g 66,5±30,6 i,k 49,4±22,2 55,1±22,7 n 70,4±27,5 p,r 43,3±44,9 74,7±20,6 v 36,3±9,6 y, a1 48,6±10,8 a3
> 5 basic salary (134) 53,2±30,9 b,d 33,6±38,0 f,h 67,8±29,8 j,l 49,1±23,8 57,9±23,2 m,o 72,0±26,9 q,s 52,0±43,9 t,u 74,6±21,5 w 37,1±10,5 z,a2 49,7±10,9 a4
p value <0,001 <0,001 0,01 0,268 0,008 0,006 0,016 0,001 <0,001 0,022
Occupation*4 (n)
Employed (348) 52,8±29,4 a, b 28,2±37,1 62,7±31,0 48,5±23,2 55,4±23,5 68,0±28,3 42,4±44,2 71,8±21,8 36,6±10,9 c, d 47,3±10,9
Retired (547) 41,5±28,4 a 26,2±35,8 64,8±30,6 47,8±23,3 53,8±21,6 69,3±27,3 41,8±44,4 73,1±20,9 34,3±9,6 c 48,7±11,0
Unemployed (114) 45,8±27,9 b 24,7±35,4 58,0±30,5 48,8±21,5 48,9±21,4 63,1±28,1 43,5±43,8 69,4±21,9 34,5±9,9 d 46,5±11,3
p value <0,001 0,632 0,071 0,734 0,052 0,093 0,883 0,231 0,001 0,07
Health Care*5 (n)
Public (774) 45,0±29,2 26,2±36,0 62,8±30,9 48,1±22,8 53,1±22,3 67,7±27,6 40,6±44,4 a 72,0±21,1 34,9±9,8 47,7±11,0
Private (224) 49,0±29,7 29,4±37,7 66,8±30,3 47,7±24,1 55,6±22,6 68,8±28,5 48,8±44,3 a 72,1±22,6 36,0±10,1 48,6±11,5
Mixed (25) 48,2±21,6 17,0±29,5 53,9±26,3 55,6±19,3 54,8±23,6 74,1±26,6 37,3±37,6 74,2±17,8 34,2±7,3 49,1±10,1
p value 0,169 0,219 0,068 0,231 0,264 0,409 0,031 0,875 0,292 0,375

PF= Physical Functioning; RPF= Role Physical Functioning; BP= Bodily Pain; GH= General Health; VT= Vitality; SF= Social Functioning; REF= Role Emotional Functioning; MH= Mental Health; PCS= Physical Component Summary; MCS= Mental Component Summary. Mann-Whitney test (p<0,05). *Kruskal Wallis test (p<0,05). Yellow and indigenous individuals corresponded to 1.2% (n=12) of the population, being disregarded from the analyses. N= 1024. 1n= 1013. 2n= 1011. 3n= 998. 4n= 1009. 5n= 1023. Equal letters in the same column of each variable represents statistical difference between the categories.

Regarding gender, with the exception of the emotional aspect domain, there was a statistical difference in all domains and between the physical and mental components, in which males had better QoL.

Regarding age, young individuals aged 19 to 29 years old had better QoL in the physical capacity (p=0.001), physical aspect (p=0.005), pain (p=0.014), and physical component (p=0.001) domains. While the elderly, aged 60 years old or more, had better QoL in the domains of general health (p=0.001), mental health (p=0.003) and mental component (p=0.001). As for education, individuals that had between 8 and 11 years of schooling had better QoL in the domains of physical aspect (p=0.025), pain (p=0.025), vitality (p=0.001), social aspect (p=0.05), emotional aspect (p=0.001) and physical component (p=0.001). While individuals with more than 11 years of education had better physical capacity (p=0.001).

Regarding race/color, individuals of white race/color had better QoL for the emotional aspect domain (p=0.011). For family income, individuals with income above 5 minimum wages had better QoL, with a significant difference in all domains (p<0.005), with the exception of general health. And with regard to occupation, employed individuals had better QoL in the physical capacity (p=0.001) and physical component (p=0.001) domains. In relation to health care, individuals who used private care showed better QoL in the emotional aspect domain (p=0.031).

Table 2 presents the data on lifestyle habits in relation to the QoL domains. Of the total number of individuals, 95 (9.3%) reported consuming alcoholic beverages, 36.3% (n=372) reported being smokers in the past, and 76.4% (n=766) reported not practicing physical activity.

Table 2 : Association of Quality of Life and Life Habits of patients on Hemodialysis in a Region of Southeastern 

Variables PF RPF BP GH VT SF REF MH PCS MCS
All (n=1024) 46,04 26,78 63,47 48,21 53,76 67,98 42,41 72,16 35,19 47,98
Smoking load1 (n)
Low (787) 47,3±29,3 26,0±36,2 63,7±30,5 48,6±22,4 53,5±22,1 68,3±27,6 42,1±43,8 72,4±20,7 35,4±9,8 47,9±10,9
High (222) 41,3±28,2 28,9±35,9 62,7±31,7 47,0±24,7 54,8±23,2 68,1±28,5 43,9±46,1 71,7±23,1 34,2±9,8 48,6±11,5
p value 0,007 0,104 0,700 0,249 0,418 0,919 0,848 0,923 0,142 0,298
Alcohol consumption* (n)
Consumer (95) 45,0±29,0 26,2±36,2 63,2±30,8 48,6±23,1 53,9±22,4 68,3±27,9 41,3±44,2 72,4±21,3 34,9±9,8 48,0±11,0
Non-consumer (929) 55,4±28,7 31,8±36,1 65,2±2,4 44,3±22,0 52,0±21,9 66,6±26,3 51,7±44,1 69,0±22,2 37,0±10,2 46,8±11,6
p value 0,001 0,044 0,613 0,162 0,627 0,403 0,031 0,154 0,058 0,32
Physical activity2 (n)
No (766) 40,4±27,8 a, b 23,5±34,6 d, e 61,9±30,7 f 46,0±22,9 h 50,8±21,7 i 66,2±28,2 k 39,5±44,0 l 70,6±21,5 m 33,6±9,5 n, o 47,3±11,1 p
Yes (207) 65,0±26,9 a, c 34,4±39,0 d 69,3±31,1 f, g 55,5±22,2 h 64,2±22,3 i, j 74,1±26,9 k 48,8±43,9 l 77,1±20,8 m 40,3±9,8 n 49,5±10,8 p
Occasionally (29) 53,4±23,9 b, c 40,5±38,0 e 62,0±24,5 g 53,0±22,1 52,4±17,2 j 67,5±20,0 49,4±45,9 71,1±20,4 38,0±8,4 o 47,1±10,9
p value <0,001 <0,001 0,007 <0,001 <0,001 0,001 0,012 <0,001 <0,001 0,039

PF= Physical Functioning; RPF= Role Physical Functioning; BP= Bodily Pain; GH= General Health; VT= Vitality; SF= Social Functioning; REF= Role Emotional Functioning; MH= Mental Health; PCS= Physical Component Summary; MCS= Mental Component Summary.

Mann-Whitney test (p<0,05). *Kruskal Wallis test (p<0,05).

N= 1024. n1= 1019. n2= 967. n3= 947.

Equal letters in the same column of each variable represents statistical difference between the categories.

The smoking habit, represented by the smoking load, showed that individuals with a low smoking load had better QoL for the functional capacity domain (p=0.007). Regarding alcohol consumption, individuals who did not consume alcoholic beverages had significantly better QoL in the physical capacity (p=0.001), physical aspect (p=0.044) and emotional aspect (p=0.031) domains.

Regarding the habit of practicing physical activity, all QoL domains and the two components (physical and mental) obtained significant results (p<0.05).

Table 3 presents data on clinical variables in relation to QoL domains. For CKD time, 51.5% (n=525) reported having the disease for less than five years, and 48.5% (n=494) for more than five years. As for HD time, most individuals 38.1% (n=368) undergo hemodialysis for less than two years, while 26.1% (n=252) undergo hemodialysis between three to five years, 20.5% (n=198) between six and ten years, and 15.4% (n=149) for more than 10 years. Regarding the use of medications, it was found that the majority 70.4% (n=664) used less than five medications, while 29.6% (n=280) used more than five medications.

Table 3 : Association of quality of life and Clinical characteristics of patients on Hemodialysis in a Metropolitan Region of Southeastern. 

Variables PF RPF BP GH VT SF REF MH PCS MCS
All (n=1024) 46,04 26,78 63,47 48,21 53,76 67,98 42,41 72,16 35,19 47,98
CKD time1 (n)
< 5 years (525) 46,3±28,7 24,3±35,2 66,3±30,8 48,9±22,5 55,1±22,7 69,1±28,2 40,5±43,9 72,4±21,5 35,5±9,5 48,0±11,2
≥ 5 years (494) 45,8±29,7 29,4±37,3 60,3±30,3 47,4±23,4 52,4±22,0 67,2±27,2 44,3±44,6 72,0±21,2 34,7±10,1 48,0±10,9
p value 0,702 0,036 0,003 0,298 0,026 0,190 0,230 0,618 0,195 0,863
HD time2 (n)
0 - 2 years (368) 44,6±29,7 21,9±34,0 a,b,c 67,1±31,5 d, e 49,5±23,2 54,4±22,7 69,7±27,8 39,2±42,8 g 72,1±22,2 35,2±9,8 47,9±11,0
3 - 5 years (252) 48,6±27,3 27,7±36,9 a 64,0±30,6 f 48,5±22,0 55,1±23,6 68,1±28,2 43,7±45,8 72,8±21,6 35,7±9,4 48,1±11,6
6 - 10 years (198) 48,0±29,7 31,9±39,5 b 61,1±28,9 d 46,3±23,5 52,2±21,1 67,1±25,4 48,4±44,9 g 71,8±20,4 35,2±10,7 48,1±10,7
≥ 10 years (149) 44,2±30,0 30,0±35,1 c 56,3±29,3 e, f 46,5±22,7 52,0±19,6 67,6±27,7 42,5±43,8 73,2±19,0 33,8±9,6 48,4±10,2
p value 0,107 <0,001 0,010 0,060 0,643 0,447 0,007 0,741 0,926 0,129
Medicaments3 (n)
< 5 medicines (667) 47,0±29,3 27,5±37,1 64,0±30,5 48,2±22,6 54,1±22,0 68,9±27,2 41,2±43,8 72,8±20,7 35,5±10,0 47,9±10,8
≥ 5 medicines (280) 44,9±28,3 26,0±35,2 61,8±30,6 47,7±23,2 53,3±23,0 66,3±29,4 48,2±45,7 71,3±22,6 34,4±9,5 48,4±11,9
p value 0,362 0,723 0,274 0,512 0,749 0,336 0,040 0,647 0,154 0,314
Diseases* (n)
None (21) 56,1±31,1 a 34,5±39,9 72,6±25,6 53,7±16,0 56,4±22,8 77,0±24,7 42,2±44,3 71,6±14,8 39,8±8,6 r 47,5±8,0
One (149) 58,2±29,4 b, c 38,0±41,5 e, f 72,7±27,3 g 54,4±21,6 i 61,5±19,7 k 75,6±24,3 m 52,4±44,4 o 77,7±17,6p 39,4±10,2 s 50,5±9,3 u
Two (157) 52,0±27,9 b, d 29,2±37,3 e 69,4±28,5 h 53,5±23,0 j 58,7±21,7 l 72,3±25,8 n 45,4±43,4 76,2±19,6q 37,3±9,2 s, t 49,5±10,3 v
Three or more (697) 41,7±28,3 a,c,d 23,5±34,1 f 59,8±31,3 g, h 45,5±23,0 i, j 50,8±22,5 k, l 65,3±28,6 m,n 39,4±44,2 o 70,0±22,3p,q 33,6±9,5 r, s, t 47,0±11,5 u, v
p value <0,001 0,001 <0,001 <0,001 <0,001 <0,001 0,008 <0,001 <0,001 0,003
Complications* (n)
None (28) 67,5±29,4 a,b,c 52,6±42,6 e, f 84,7±23,0 g 60,2±21,6 j 74,2±15,8 m,n 86,3±18,9 r 57,1±44,3 u 86,0±11,8 v 43,8±9,2 y, z 54,0±7,2 a3
One (59) 52,9±32,0 a, d 41,1±41,7 g 80,4±27,6 h 56,9±21,7 k 59,3±19,2 m,o,p 77,5±21,6 r, s 48,0±45,5 79,7±17,8 w 40,0±10,7 y,a1 50,5±9,7 a4,a5
Two (66) 50,9±32,3 b 31,4±38,3 e 80,8±24,5 i 55,9±21,4 l 68,9±20,3 o, q 78,5±27,0 t 51,9±46,0 85,9±10,6 x 37,7±8,9 a2 54,5±8,4 a4,a6
Three or more (871) 44,4±28,3 c, d 24,5±34,9 f, g 60,3±30,5 g,h,i 46,6±22,9j, k,l 51,5±22,1 n,p,q 66,1±28,0s, t 40,7±43,9 u 70,1±21,8v,w,x 34,3±9,6z,a1,a2 47,1±11,2a3,a5,a6
p value <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 0,048 <0,001 <0,001 <0,001

PF= Physical Functioning; RPF= Role Physical Functioning; BP= Bodily Pain; GH= General Health; VT= Vitality; SF= Social Functioning; REF= Role Emotional Functioning; MH= Mental Health; PCS= Physical Component Summary; MCS= Mental; Component Summary; Mann-Whitney test (p<0,05). *Kruskal Wallis test (p<0,05).; N= 1024. 1n= 1009. n2= 1002; Equal letters in the same column of each variable represents statistical difference between the categories.

Most individuals 68.1% (n=697) reported having 3 or more diseases and 78.8% (n=807) reported having 2 or more complications. Individuals with the disease for less than 5 years had better QoL in the pain (p=0.003) and vitality (p=0.026) domains. On the other hand, individuals with the disease for more than 5 years had better QoL in the physical aspect domain (p=0.036).

For the duration of HD, individuals with 6 to 10 years of treatment had better QoL in the physical aspect (p<0.001) and emotional aspect (p=0.007) domains. Among individuals with 2 years of treatment or less, they had better QoL in the pain domain (p=0.010).

Regarding the number of medications used, individuals who used more than 5 medications had better emotional aspects (p=0.040). With regard to the number of diseases and complications, individuals with three or more diseases and three or more complications showed significantly worse QoL for all domains.

After adjustment for multiple linear regression, male gender was a predictor of better functional capacity (β= 0.147, p<0.001), pain (β= 0.174, p<0.001) and summary of the physical component (β= 0.138, p<0.001). The age group from 30 to 59 years old and over 60 years old were predictors of worse functional capacity (β= -0.184, p=0.008 and β= -0.370, p<0.001), physical aspect (β= -0.215, p=0.003 and β= -0.199, p=0.008) and physical component summary (β= -0.188, p=0.008 and β= -0.277, p<0.001), respectively. The categories of education above 8 years of schooling were predictors of better functional capacity. Family income strata were predictors of better functional capacity, physical aspect and summary of the physical component. The profession was a predictor of worse functional capacity among retired/on leave (β= -0.069, p=0.038) (Table 4).

Table 4 : Multiple linear regression considering socio-demographic variables associated with domains corresponding to physical health. 

Variables P value Beta CI (95%) P value Beta Adjusted CI (95%)
Physical Functioning
Sex
Female
Male <0,001 0,207 8,54 – 15,83 <0,001 0,147 4,88 – 12,40
Age group
19 - 29 years
30 - 59 years <0,001 -0,289 -24,70 – -8,94 0,008 -0,184 -18,66 – -2,87
≥ 60 years <0,001 -0,485 -36,81 – -20,42 <0,001 -0,370 -30,10 – -13,56
Education1
≤ 8 years
> 8 ≤ 11 years 0,006 0,093 1,69 – 9,89 0,004 0,096 1,92 – 10,08
> 11 years 0,009 0,096 1,96 – 13,38 0,016 0,088 1,31 – 12,53
Family Income2
No income
1-2 basic salary 0,021 0,112 0,97 – 12,19 0,014 0,120 1,44 – 12,71
2-5 basic salary 0,002 0,152 3,47 – 15,73 0,012 0,125 1,75 – 14,02
> 5 basic salary 0,002 0,147 4,73 – 20,10 0,002 0,141 4,29 – 19,61
Occupation3
Employed
Retired 0,001 -0,110 -10,27 – -2,62 0,038 -0,069 -7,90 – -0224
Unemployed 0,597 0,018 -4,59 – 7,98 0,895 0,004 -5,85 – 6,69
Health Care4
Public
Private 0,839 -0,007 -5,19 – 4,22 0,505 -0,023 -6,20 – 3,05
Mixed 0,696 -0,012 -13,18 – 8,80 0,685 -0,012 -13,40 – 8,81
Role Physical Functioning
Sex (n)
Female
Male <0,001 0,115 3,78 – 12,85 0,084 0,059 -0,57 – 9,03
Age group
19 - 29 years
30 - 59 years <0,001 -0,251 -27,83 – -8,24 0,003 -0,215 -25,53 – -5,28
≥ 60 years <0,001 -0,277 -30,31 – -10,04 0,008 -0,199 -25,06 – -3,81
Education1
≤ 8 years
> 8 ≤ 11 years 0,458 0,026 -3,30 – 7,33 0,102 0,06 -0,90 – 9,97
> 11 years 0,498 -0,026 -9,81 – 4,77 0,921 -0,004 -7,74 – 6,99
Family Income2
No income
1-2 basic salary 0,146 0,075 -1,88 – 12,73 0,101 0,088 -1,24 – 13,92
2-5 basic salary 0,008 0,137 2,82 – 18,67 0,026 0,12 1,13 – 17,47
> 5 basic salary 0,002 0,146 5,51 – 24,87 0,001 0,16 6,62 – 26,48
Bodily Pain
Sex
Female
Male <0,001 0,202 8,38 – 16,71 <0,001 0,174 6,50 – 15,02
Age group
19 - 29 years
30 - 59 years 0,339 -0,071 -13,24 – 4,56 0,927 -0,007 -9,43 – 8,58
≥ 60 years 0,830 -0,016 -10,26 – 8,24 0,877 0,012 -8,67 – 10,15
Education1
≤ 8 years
> 8 ≤ 11 years 0,216 0,044 -1,69 – 7,49 0,177 0,049 -1,44 – 7,82
> 11 years 0,078 -0,068 -12,17 – 0,63 0,219 -0,048 -10,43 – 2,39
Marital Status
With partner
Without partner 0,668 0,014 -3,16 – 4,92 0,590 0,018 -2,94 – 5,17
Family income2
No income
1-2 basic salary 0,167 0,072 -1,88 – 10,83 0,294 0,056 -2,99 – 9,88
2-5 basic salary 0,012 0,133 1,94 – 15,85 0,084 0,094 -0,82 – 13,24
> 5 basic salary 0,029 0,110 0,99 – 18,50 0,079 0,089 -0,91 – 16,79
Occupation3
Employed
Retired 0,562 0,021 -3,02 – 5,56 0,101 0,059 -0,71 – 7,99
Unemployed 0,280 0,039 -3,17 – 10,94 0,153 0,052 -1,95 – 12,44
Health Care4
Public
Private 0,412 0,030 -3,07 – 7,50 0,887 0,005 -4,92 – 5,69
Mixed 0,248 -0,036 -19,44 – 5,21 0,317 -0,032 -19,17 – 6,21
General Health
Sex
Female
Male 0,038 0,065 0,16 – 5,83 0,655 0,015 -2,29 – 3,65
Age group
19 - 29 years
30 - 59 years 0,252 -0,078 -9,76 – 2,56 0,966 0,003 -6,21 – 6,49
≥ 60 years 0,586 0,037 -4,50 – 7,95 0,160 0,100 -1,84 – 11,15
Physical Component Summary
Sex
Female
Male <0,001 0,211 2,90 – 5,44 <0,001 0,138 1,40 – 4,05
Age group
19 - 29 years
30 - 59 years <0,001 -0,289 -8,40 – -2,92 0,008 -0,188 -9,10 – -0,052
≥ 60 years <0,001 -0,367 -10,13 – -4,43 <0,001 -0,277 -8,37 – -2,61
Education1
≤ 8 years
> 8 ≤ 11 years 0,171 0,047 -0,42 – 2,41 0,219 0,043 -0,53 – 2,31
> 11 years 0,880 -0,006 -2,10 – 1,80 0,589 -0,021 -2,53 – 1,43
Family Income2
No income
1-2 basic salary 0,004 0,148 0,95 – 4,87 0,002 0,157 1,11 –5,05
2-5 basic salary <0,001 0,199 2,12 – 6,37 <0,001 0,193 1,94 – 6,20
> 5 basic salary <0,001 0,179 2,47 – 7,63 <0,001 0,193 2,83 – 8,04
Occupation3
Employed
Retired 0,015 -0,084 -2,98 – -0,31 0,146 -0,052 -2,40 – 0,35
Unemployed 0,462 -0,026 -1,37 – 3,01 0,502 0,024 -1,45 –2,96

Multiple linear regression (p<0,05). N= 1024. n1= 1013. n2= 988. n3= 1009. n4= 1023. PF: Adjusted for smoking history, physical activity, duration of HD, number of diseases and number of complications. RPF: Adjusted for smoking history, alcohol consumption, physical activity, duration of HD, number of diseases and number of complications. BP: Adjusted for physical activity, CKD time, HD time, number of diseases and number of complications. GH: Adjusted alcohol consumption, physical activity, time on HD, number of diseases and number of complications. PCS: Adjusted for smoking history, alcohol consumption, physical activity, CKD time, number of medications, number of diseases and number of complications.

For the domains related to mental health, after adjustment, male gender was a predictor of better QoL for vitality (β= 0.087, p=0.009), social aspect (β= 0.093, p=0.007), mental health (β= 0.134, p<0.001) and mental component summary (β= 0.072, p=0.048). The age group over 60 years old was a predictor of better mental health (β= 0.188, p=0.009) and summary of the mental component (β= 0.214, p=0.008). Education between 8 and 11 years of schooling was a predictor of better vitality (β= 0.102, p=0.003), emotional aspect (β= 0.083, p=0.034), mental health (β= 0.188, p=0.031) and summary of the mental component (β= 0.076, p=0.042), while education above 11 years of schooling was a predictor of worse social status (β= -0.122, p=0.002). Family income categories were predictors of better social appearance (Table 5).

Table 5 : Multiple linear regression considering socio-demographic variables associated with domains corresponding to mental health. 

Variables P value Beta CI (95%) P value Beta Adjusted CI (95%)
Vitality
Sex
Female
Male <0,001 0,152 3,84 – 9,93 0,009 0,087 0,97 – 6,89
Age group
19 - 29 years
30 - 59 years 0,198 -0,095 -10,77 – 2,23 0,999 0,000 -6,26 – 6,26
≥ 60 years 0,554 -0,045 -8,79 – 4,71 0,427 0,059 -3,89 – 9,21
Education1
≤ 8 years
> 8 ≤ 11 years 0,013 0,089 0,90 – 7,59 0,003 0,102 1,67 – 8,03
> 11 years 0,267 -0,042 -7,19 – 1,99 0,407 -0,03 -6,25 – 2,53
Marital Status
With partner
Without partner 0,637 0,016 -2,24 – 3,66 0,391 0,041 -2,60 – 6,27
Family Income2
No income
1-2 basic salary 0,576 0,030 -3,33 – 5,98 0,417 0,041 -2,60 – 6,27
2-5 basic salary 0,242 0,062 -2,04 – 8,09 0,548 0,031 -3,36 –6,32
> 5 basic salary 0,059 0,092 -0,22 – 12,16 0,09 0,079 -0,789 – 10,95
Occupation3
Employed
Retired 0,399 -0,030 -4,49 – 1,79 0,773 -0,01 -3,46 – 2,57
Unemployed 0,539 -0,022 -6,78 – -3,54 0,449 -0,026 -6,86 – 3,04
Social Functioning
Sex
Female
Male <0,001 0,133 3,74 – 11,24 0,007 0,093 1,42 – 9,12
Education1
≤ 8 years
> 8 ≤ 11 years 0,498 -0,024 -5,46 – 2,65 0,490 -0,024 -5,51 – 2,64
> 11 years 0,001 -0,132 -15,80 – -4,41 0,002 -0,122 -15,08 – -3,57
Race/Color2
White
Black 0,521 0,025 -3,38 – 6,68 0,822 0,009 -4,47 – 5,63
Brown-skinned 0,911 -0,004 -4,54 – 4,05 0,551 -0,023 -5,59 – 2,98
Family Income3
No income
1-2 basic salary 0,020 0,123 1,10 – 12,72 0,013 0,132 1,57 – 13,24
2-5 basic salary <0,001 0,192 5,32 – 17,94 0,001 0,177 4,40 – 17,11
> 5 basic salary <0,001 0,182 7,06 – 22,32 <0,001 0,178 6,65 – 21,91
Occupation4
Employed
Retired 0,820 0,008 -3,39 – 4,28 0,388 0,03 -2,17 – 5,59
Unemployed 0,816 -0,008 -7,22 – 5,69 0,676 -0,015 -7,91 – 5,13
Role Emotional Functioning
Sex
Female
Male 0,309 0,034 -2,79 – 8,78 0,927 0,003 -6,09 – 6,69
Age group
19 - 29 years
30 - 59 years 0,016 -0,173 -27,74 – -2,84 0,158 -0,108 -22,80 – 3,70
≥ 60 years 0,009 -0,192 -30,12 – -4,36 0,376 -0,07 -20,16 – 7,62
Education1
≤ 8 years
> 8 ≤ 11 years 0,048 0,072 0,05 – 13,46 0,034 0,083 0,59 – 14,99
> 11 years 0,574 0,022 -6,68 – 12,04 0,376 0,038 -5,55 – 14,68
Marital Status
With partner
Without partner 0,446 -0,026 -8,22 – 3,62 0,638 -0,017 -7,97 – 4,89
Race/Color2
White
Black 0,130 -0,060 -14,28 – 1,84 0,023 -0,097 -18,91 – -1,41
Brown-skinned 0110 -0,064 -12,54 – 1,27 0,172 -0,058 -12,56 – 2,25
Family Income3
No income
1-2 basic salary 0,825 0,012 -8,25 – 10,34 0,945 0,004 -9,71 – 10,41
2-5 basic salary 0,630 0,026 -7,69 – 12,70 0,777 -0,017 -12,51 – 9,35
> 5 basic salary 0,124 0,079 -2,78 – 23,12 0,278 0,059 -6,24 – 21,67
Health Care4
Public
Private 0,533 0,023 -5,29 – 10,23 0,356 0,037 -4,39 – 12,20
Mixed 0,263 -0,036 -28,38 – 7,76 0,403 -0,029 -28,16 – 11,32
Mental Health
Sex
Female
Male <0,001 0,168 4,53 – 10,02 <0,001 0,134 3,04 – 8,64
Age group
19 - 29 years
30 - 59 years 0,420 0,056 -3,46 – 8,30 0,132 0,105 -1,37 – 10,42
≥ 60 years 0,061 0,134 -0,26 –11,93 0,009 0,188 2,04 – 14,36
Education1
≤ 8 years
> 8 ≤ 11 years 0,124 0,054 -0,68 – 5,66 0,031 0,075 0,32 – 6,60
> 11 years 0,302 -0,039 -6,64 – 2,06 0,559 -0,022 -5,57 – 3,01
Marital Status
With partner
Without partner 0,542 0,020 -1,93 – 3,67 0,249 0,038 -1,14 – 4,40
Family Income2
No income
1-2 basic salary 0,472 -0,037 -6,02 –2,79 0,569 -0,029 -5,62 – 3,08
2-5 basic salary 0,259 0,059 -2,03 – 7,55 0,484 0,036 -3,05 – 6,43
> 5 basic salary 0,478 0,034 -3,75 – 8,00 0,474 0,034 -3,66 – 7,88
Mental Component Summary
Sex
Female
Male 0,004 0,100 0,71 – 3,77 0,048 0,072 0,017 – 3,19
Age group
19 - 29 years
30 - 59 years 0,600 0,039 -2,40 – 4,15 0,170 0,106 -1,01 – 5,70
≥ 60 years 0,083 0,134 -0,39 – 6,42 0,008 0,214 1,24 – 8,26
Education1
≤ 8 years
> 8 ≤ 11 years 0,168 0,050 -0,49 – 2,85 0,042 0,076 0,065 – 3,48
> 11 years 0,086 -0,067 -4,34 – 0,28 0,265 -0,045 -3,68 – 1,01
Marital Status
With partner
Without partner 0,871 0,006 -1,36 – 1,61 0,541 0,021 -1,04 – 1,98
Race/Color2
White
Black 0,620 0,020 -1,52 – 2,55 0,852 -0,008 -2,26 – 1,87
Brown-skinned 0,617 -0,020 -2,19 – 1,30 0,314 -0,041 -2,67 – 0,86
Family Income3
No income
1-2 basic salary 0,727 -0,019 -2,77 – 1,93 0,529 -0,035 -3,18 – 1,63
2-5 basic salary 0,348 0,051 -1,33 – 3,79 0,853 0,010 -2,37 – 2,87
> 5 basic salary 0,136 0,074 -0,75 – 5,52 0,245 0,060 -1,30 – 5,11
Occupation4
Employed
Retired 0,327 0,036 -0,79 – 2,37 0,161 0,052 -0,46 – 2,78
Unemployed 0,698 0,014 -2,08 – 3,11 0,590 0,020 -1,95 – 3,41

Multiple linear regression (p<0,05). N= 1024. n1= 1013. n2= 988. n3= 1009. n4= 1023. VT: Adjusted for physical activity, CKD time, number of diseases and number of complications. SF: Adjusted for physical activity, CKD time, number of diseases and number of complications. REF: Adjusted for alcohol consumption, physical activity, duration of HD, number of medications, number of diseases and number of complications. MH: Adjusted alcohol consumption, physical activity, number of diseases and number of complications. MCS: Adjusted for physical activity, duration of HD, number of diseases and number of complications.

For lifestyle habits related to the physical health domains, the absence of physical activity was a predictor of worse QoL for all domains: functional capacity (β= -0.272, p<0.001), physical aspect (β= -0.099, p= 0.004), pain (β= -0.081, p=0.018), general health status (β= -0.167, p<0.001) and summary of the physical component (β= -0.221, p<0.001). The high smoking burden was a predictor of worse functional capacity (β= -0.060, p=0.049) (Table 6).

Table 6 : Multiple linear regression considering lifestyle variables associated with domains corresponding to physical health. 

Variables P value Beta CI (95%) P value Beta Adjusted CI (95%)
Physical Functioning
Smoking load1
Low
High 0,021 -0,069 -8,98 – -0,73 0,049 -0,060 -8,52 – -0,019
Alcohol consumption
Consumer
Non-consumer 0,007 0,081 2,29 – 14,09 0,495 0,021 -3,85 – 7,97
Physical activity2
yes
No <0,001 -0,347 -28,17 – -19,66 <0,001 -0,272 -22,83 – -14,37
Occasionally 0,036 -0,066 -22,04 – -0,73 0,115 -0,048 -19,72 – 2,14
Role Physical Functioning
Smoking load1
Low
High 0,164 0,044 -1,56 – 9,16 0,293 0,035 -2,65 – 8,78
Alcohol consumption
Consumer
Non-consumer 0,217 0,039 -2,83 – 12,50 0,716 0,012 -6,39 – 9,29
Physical activity2
Yes
No <0,001 -0,127 -16,24 – -5,17 0,004 -0,099 -13,96 – -2,64
Occasionally 0,390 0,029 -7,77 – 19,93 0,256 0,038 -6,00 – 22,57
Bodily Pain
Physical activity2
Yes
No 0,002 -0,102 -12,11 – -2,68 0,018 -0,081 -10,59 – -0,97
Occasionally 0,228 -0,04 -19,25 – 4,60 0,467 -0,024 -17,20 – 7,89
General Health
Alcohol consumption
Consumer
Non-consumer 0,085 -0,066 -10,14 – 0,40 0,184 -0,043 -8,44 – 1,62
Physical activity2
Yes
No <0,001 -0,181 -13,33 – -6,32 <0,001 -0,167 -12,59 – -5,42
Occasionally 0,583 -0,018 -11,31 – 6,37 0,565 -0,019 -12,00 – 6,56
Physical Component Summary
Smoking load1
Low
High 0,263 -0,034 -2,25 – 0,61 0,202 -0,041 -2,49 – 0,52
Alcohol consumption
Consumer
Non-consumer 0,170 0,042 -0,61 – 3,49 0,835 0,007 -1,84 –2,28
Physical activity2
Yes
No <0,001 -0,279 -7,99 – -5,02 <0,001 -0,221 -6,58 – -3,56
Occasionally 0,259 -0,036 -5,85 – 1,57 0,201 -0,042 -6,11 –1,28

Multiple linear regression (p<0,05). N= 1024. n1= 1009. n2= 1002. PF: Adjusted for sex, age group, education, income, profession, health care, length of HD, number of diseases and number of complications. RPF: Adjusted for sex, age group, education, income, time on HD, number of diseases and number of complications. BP: Adjusted for sex, age group, education, marital status, income, profession, health care, time on CKD, time on HD, number of diseases and number of complications. GH: Adjusted for sex, age group, duration of HD, number of diseases and number of complications. PCS: Adjusted for sex, age group, education, income, profession, time with CKD, number of medications, number of diseases and number of complications.

For the domains related to mental health, the absence of physical activity and its occasional practice were predictors of worse vitality, (β= -0.241, p<0.001 and β= -0.086, p=0.007) respectively, of social aspect (β= -0.096, p=0.005) and mental health (β= -0.117, p<0.001). The non-consumption of alcoholic beverages was a predictor of worse mental health (β= -0.062, p=0.047) (Table 7).

Table 7 : Multiple linear regression considering lifestyle variables associated with domains corresponding to mental health. 

Variables P value Beta CI (95%) P value Beta Adjusted CI (95%)
Vitality
Physical activity1
Yes
No <0,001 -0,252 -16,67 – -9,97 <0,001 -0,242 -15,94 – -9,25
Occasionally 0,006 -0,088 -20,27 – -3,30 0,007 -0,086 -19,41 – -3,14
Social Functioning
Physical activity1
Yes
No <0,001 -0,12 -12,15 – -3,60 0,005 -0,096 -10,70 – -1,86
Occasionally 0,229 -0,04 -17,45 – 4,18 0,278 -0,036 -16,91 – 4,87
Role Emotional Functioning
Alcohol consumption
Consumer
Non-consumer 0,045 0,063 0,22 – 19,08 0,407 0,029 -5,99 – 14,78
Physical activity1
Yes
No 0,011 -0,084 -15,54 – -1,97 0,106 -0,059 -13,82 – 1,32
Occasionally 0,949 0,002 -16,56 – 17,68 0,114 0,057 -3,92 – 36,75
Mental Health
Alcohol consumption
Consumer
Non-consumer 0,107 -0,051 -8,34 – 0,81 0,047 -0,062 -9,10 – -0,052
Physical activity1
Yes
No <0,001 -0,133 -10,03 – -3,45 <0,001 -0,117 -9,18 – -2,58
Occasionally 0,160 -0,046 -14,26 – 2,35 0,169 -0,044 -13,57 – 2,38
Mental Component Summary
Physical activity1
Yes
No 0,011 -0,084 -3,91 – -0,49 0,074 -0,063 -3,42 – 0,16
Occasionally 0,272 -0,036 -6,74 – 1,90 0,907 -0,004 -4,93 – 4,38

Multiple linear regression (p<0,05).; N= 1024. n1= 1002. ; VT: Adjusted for sex, age group, education, marital status, income, occupation, time with CKD, number of diseases and number of complications.; SF: Adjusted for gender, education, race/color, income, profession, time with CKD, number of diseases and number of complications.; REF: Adjusted for sex, age group, education, marital status, race/color, income, health care, length of HD, number of medications, number of diseases and number of complications. MH: Adjusted for sex, age group, education, marital status, income, number of diseases and number of complications. MCS: Adjusted for sex, age group, education, marital status, race/color, income, occupation, length of HD, number of diseases and number of complications.

For clinical characteristics associated with the physical health domains, the number of complications was a predictor of worse QoL for all domains. The categories of time on HD were predictors of better physical appearance and over 10 years of HD was the worst predictor of pain (β= -0.123, p=0.005) (Table 8).

Table 8 : Multivariate linear regression considering clinical variables associated with domains corresponding to physical health. 

Variables P value Beta CI (95%) P value Beta Adjusted CI (95%)
Physical Functioning
HD time2
0 - 2 years
3 - 5 years 0,115 0,005 -0,90 – 8,26 0,363 0,03 -2,29 – 6,26
6 - 10 years 0,260 0,039 -2,10 – 7,79 0,572 0,019 -3,36 – 6,08
≥ 10 years 0,599 -0,018 -6,93 – 4,00 0,061 -0,061 -10,36 – 0,23
Diseases
None
One 0,690 0,032 -10,41 – 15,73 0,446 0,059 -7,70 – 17,47
Two 0,734 -0,028 -15,41 – 10,85 0,794 0,021 -10,97 – 14,34
Three or more 0,070 -0,186 -24,09 – 0,93 0,618 -0,049 -15,23 – 9,06
Complications
None
One 0,080 -0,095 -24,82 – 1,41 0,047 -0,09 -24,18 – -0,18
Two 0,061 -0,104 -25,37 – 0,58 0,075 -0,092 -22,56 – 1,09
Three or more 0,003 -0,210 -28,24 – -6,04 <0,001 -0,235 -29,11 – -8,78
Role Physical Functioning
CKD time1
< 5 years
≥ 5 years 0,906 0,005 -6,25 – 7,04 0,957 0,002 -6,32 – 6,67
HD time2
0 - 2 years
3 - 5 years 0,044 0,072 0,15 – 11,81 0,024 0,083 0,87 – 12,58
6 - 10 years 0,018 0,112 1,75 – 18,38 0,007 0,128 3,07 – 19,66
≥ 10 years 0,080 0,077 -0,93 – 16,43 0,028 0,098 1,03 – 18,57
Diseases
None
One 0,496 0,056 -10,67 – 22,03 0,277 0,089 -7,23 – 25,19
Two 0,859 -0,014 -17,92 – 14,95 0,975 0,003 -16,07 – 16,59
Three or more 0,588 -0,056 -19,98 – 11,34 0,845 0,02 -14,02 – 17,13
Complications
None
One 0,125 -0,083 -29,27 – 3,56 0,180 -0,074 -27,14 – 5,08
Two 0,014 -0,137 -36,72 – -4,16 0,032 -0,122 -33,51 – -1,53
Three or more <0,001 -0,279 -42,32 – -14,53 <0,001 -0,281 -41,45 – 14,01
Bodily Pain
CKD time1
< 5 years
≥ 5 years 0,607 -0,514 -6,94 – 4,05 0,646 -0,021 -6,83 – 4,24
HD time2
0 - 2 years
3 - 5 years 0,297 -0,037 -7,38 – 2,26 0,204 -0,046 -8,16 – 1,74
6 - 10 years 0,227 -0,056 -11,12 – 2,64 0,195 -0,061 -11,67 – 2,38
≥ 10 years 0,006 -0,119 -17,24 – -2,87 0,005 -0,123 -18,16 – -3,15
Diseases
None
One 0,882 -0,012 -14,55 – 12,50 0,954 -0,005 -14,45 – 13,62
Two 0,585 -0,044 -17,37 – 9,81 0,591 -0,045 -17,98 – 10,25
Three or more 0,070 -0,183 -24,91 – 0,99 0,092 -0,177 -25,13 – 1,90
Complications
None
One 0,698 -0,021 -16,27 – 10,89 0,713 -0,02 -16,27 – 11,13
Two 0,785 -0,015 -15,33 – 11,59 0,826 0,012 -12,00 – 15,02
Three or more 0,001 -0,220 -30,39 – -7,40 0,018 -0,166 -25,67 – -2,45
General Health
HD time2
0 - 2 years
3 - 5 years 0,586 -0,019 -4,62 – 2,61 0,544 -0,021 -4,73 – 2,49
6 - 10 years 0,103 -0,057 -7,17 – 0,65 0,143 -0,052 -6,89 – 0,99
≥ 10 years 0,118 -0,054 -7,78 – 0,87 0,163 -0,049 -7,55 – 1,27
Diseases
None
One 0,893 0,011 -9,62 – 11,05 0,792 0,021 -8,87 – 11,63
Two 0,966 -0,003 -10,61 – 10,17 0,973 0,003 -10,18 – 10,53
Three or more 0,155 -0,147 -17,08 – 2,71 0,232 -0,122 -15,87 – 3,84
Complications
None
One 0,552 -0,032 -13,52 – 7,23 0,698 -0,021 -12,50 – 8,37
Two 0,301 -0,058 -15,67 – 4,85 0,462 -0,042 -14,18 – 6,44
Three or more 0,014 -0,173 -19,84 – -2,28 0,035 -0,150 -18,50 – -0,65
Physical Component Summary
CKD time1
< 5 years
≥ 5 years 0,159 -0,044 -2,09 – 0,34 0,126 -0,048 -2,14 – 0,26
Medicaments3
< 5 medicines
≥ 5 medicines 0,475 -0,022 -1,82 – 0,85 0,724 -0,011 -1,55 – 1,07
Diseases
None
One 0,901 0,010 -4,17 – 4,73 0,748 0,026 -3,68 – 5,12
Two 0,537 -0,052 -5,86 – 3,05 0,718 -0,030 -5,23 – 3,60
Three or more 0,029 -0,225 -8,99 – -0,47 0,223 -0,126 -6,87 – 1,60
Complications
None
One 0,242 -0,063 -7,45 – 1,88 0,239 -0,061 -7,18 – 1,79
Two 0,028 -0,128 -9,57 – -0,55 0,043 -0,116 -8,75 – -0,140
Three or more <0,001 -0,263 -11,29 – -3,43 <0,001 -0,261 -10,93 – -3,39

Multiple linear regression (p<0,05). N= 1024. n1= 1019. n2= 947. n3= 947. PF: Adjusted for sex, age group, education, income, profession, health care, smoking load, physical activity. RPF: Adjusted for sex, age group, education, income, time on CKD, time on HD, smoking, alcohol consumption, physical activity. BP: Adjusted for sex, age group, education, marital status, income, occupation, health care, physical activity. GH: Adjusted for sex, age group, alcohol consumption, physical activity. PCS: Adjusted for sex, age group, education, family income, occupation, smoking load, alcohol consumption, physical activity.

Table 9 : Multiple linear regression considering clinical variables associated with domains corresponding to mental health 

Variables P value Beta CI (95%) P value Beta Adjusted CI (95%)
Vitality
CKD time1
< 5 years
≥ 5 years 0,077 -0,53 -5,04 – 0,26 0,066 -0,056 -5,17 – 0,168
Diseases
None
One 0,279 0,086 -4,40 – 15,26 0,120 0,12 -2,02 – 17,44
Two 0,454 0,060 -6,09 – 13,61 0,275 0,087 -4,32 – 15,17
Three or more 0,538 -0,062 -12,35 – 6,44 0,879 0,015 -8,16 – 10,07
Complications
None
One 0,004 -0,151 -24,22 – -4,77 0,002 -0,155 -24,62 – -5,45
Two 0,333 -0,052 -14,33 – 4,86 0,503 -0,036 -12,58 – 6,18
Three or more <0,001 -0,321 -28,37 – -11,94 <0,001 -0,304 -26,99 – -10,83
Social Functioning
CKD time1
< 5 years
≥ 5 years 0,310 -0,031 -5,12 – 1,62 0,372 -0,029 -5,12 – 1,191
Diseases
None
One 0,877 -0,012 -13,47 –11,51 0,687 -0,033 -15,44 – 10,17
Two 0,616 -0,042 -15,72 – 9,31 0,396 -0,071 -18,41 – 7,28
Three or more 0,133 -0,154 -21,09 – 2,78 0,097 -0,173 -22,72 – 1,87
Complications
None
One 0,215 -0,066 -20,17 – 4,54 0,239 -0,063 -20,18 – 5,04
Two 0,258 -0,062 -19,23 – 5,16 0,300 -0,058 -18,89 – 5,83
Three or more 0,001 -0,219 -27,53 – -6,65 0,008 -0,187 -25,18 – -3,87
Role Emotional Functioning
HD time2
0 - 2 years
3 - 5 years 0,441 0,029 -4,48 – 10,29 0,270 0,043 -3,33 – 11,90
6 - 10 years 0,036 0,078 0,58 – 16,62 0,013 0,097 2,20 – 18,97
≥ 10 years 0,611 0,019 -6,53 – 11,11 0,459 0,029 -5,82 – 12,89
Medicaments3
< 5 medicines
≥ 5 medicines 0,028 0,073 0,787– 13,54 0,020 0,081 1,21 – 14,50
Diseases
None
One 0,216 0,107 -7,67 – 33,98 0,232 0,105 -8,29 – 34,16
Two 0,479 0,062 -13,36 – 28,45 0,655 0,04 -16,52 – 26,27
Three or more 0,760 0,033 -16,82 – 23,03 0,909 0,013 -19,24 – 21,61
Complications
None
One 0,424 -0,046 -31,21 – 13,14 0,568 -0,034 -28,86 – 15,84
Two 0,450 -0,047 -29,67 – 13,16 0,615 -0,032 -27,20 – 16,11
Three or more 0,063 -0,141 -36,46 – 0,97 0,110 -0,126 -34,61 – 3,51
Mental Health
Diseases
None
One 0,191 0,105 -3,17 – 15,86 0,146 0,144 -2,45 – 16,47
Two 0,263 0,092 -4,09 – 14,96 0,355 0,074 -5,01 – 13,96
Three or more 0,857 0,018 -8,25 – 9,92 0,763 0,03 -7,65 –10,44
Complications
None
One 0,188 -0,069 -15,74 –3,08 0,326 -0,052 -14,21 – 4,72
Two 0,949 -0,003 -9,57 – 8,96 0,548 0,033 -6,45 – 12,16
Three or more <0,001 -0,245 -22,67 – -6,79 0,006 -0,187 -19,22 – -3,14
Mental Component Summary
HD time2
0 - 2 years
3 - 5 years 0,630 0,017 -1,31 – 2,17 0,466 0,027 -1,13 – 2,48
6 - 10 years 0,672 0,015 -1,48 – 2,29 0,587 0,020 -1,42 – 2,51
≥ 10 years 0,648 0,016 -1,60 – 2,57 0,706 0,014 -1,79 – 2,65
Diseases
None
One 0,194 0,107 -1,68 – 8,28 0,187 0,109 -1,66 – 8,51
Two 0,326 0,082 -2,50 – 7,51 0,531 0,053 -3,49 – 6,76
Three or more 0,708 0,039 -3,86 – 5,68 0,873 0,017 -4,50 – 5,30
Complications
None
One 0,134 -0,082 -8,82 – 1,18 0,135 -0,083 -8,92 – 1,20
Two 0,859 -0,010 -5,39 – 4,49 0,907 0,007 -4,70 – 5,30
Three or more 0,002 -0,220 -11,00 – -2,53 0,010 -0,185 -9,92 – -1,32

Multiple linear regression (p<0,05). N= 1024. n1= 1019. n2= 947. n3= 947. VT: Adjusted for sex, age group, education, marital status, income, occupation, physical activity. SF: Adjusted for sex, education, race/color, income, occupation, physical activity. REF: Adjusted for sex, age group, education, marital status, race/color, income, health care, alcohol consumption, physical activity. MH: Adjusted for sex, age group, education, marital status, income, alcohol consumption, physical activity. MCS: Adjusted for sex, age group, education, marital status, race/color, income, occupation, physical activity.

For the domains related to mental health, except for the emotional aspect, the number of complications was a predictor of worse QoL for all domains. Time on HD between 6 to 10 years (β= p=0.013) and the use of more than 5 medications (β= 0.081, p=0.020) were predictors of better emotional appearance.

DISCUSSION

The results demonstrate that QoL is multidimensional and it can be affected by inherent individual’s characteristics and by clinical conditions. The determining factors were male gender, age, education, physical activity and the number of intradialytic complications are highlighted as factors associated with both physical and mental health and, therefore, important predictors of QoL in this population.

Mental health represented the best QoL of the individuals in the study, while the worst QoL was represented by the physical aspect. This data is corroborated by the summaries of components, in which the mental component obtained higher scores in relation to the physical component. Better mental health at the expense of physical health is a common finding in this population, and it is related to the chronic nature of the disease, in which the individual adapts not only to the disease, but psychologically to his reality over time, influencing QoL17,26-28.

Advanced age is related to the gradual decline in physical health29, however, the older the patient, the greater the adherence to treatment26. Elderly individuals value social and emotional support, regardless of the state of frailty30, influencing their perception of QoL. In this context, it was observed in this study that while being young (19 to 29 years old) was a predictor of better functional capacity and physical aspect, being elderly (≥ 60 years old) was a predictor of better mental health. Similar results were found in other studies31,32.

Despite the high mental health of the general population in the study, there was a low QoL for females when compared to males. Low QoL among women is also observed in other studies29,31. Gerogianni et al., (2017)33, identified higher levels of anxiety and depression in women undergoing hemodialysis when compared to men, a result attributed to the social context in which the women find themselves, for various daily responsibilities that impact QoL.

In this social context, socioeconomic factors also stand out. In this study, education was configured as a predictor of mental health and functional capacity, a result similar to previous studies17,31,32. Higher levels of education allow greater access to information and better economic status, enabling a more assertive assessment of QOL16. It is also assumed that individuals with a higher level of education tend to develop more intellectual than physical activities29, which explains the better functional capacity of individuals over 8 years of schooling in our findings.

Therefore, it is noted that social inequities such as low education, which are responsible for increasing the risk of CKD, continue to influence on their QoL even after HD treatment. In this context, racial disparities also become a determinant of health34,35. In our findings, in accordance with other studies35,36, there was a predominance of non-white individuals (71.97%), and the negative impact of black and mixed race/color, as a predictor of worse emotional appearance.

Added to this scenario, the socioeconomic level is reported by different studies as a determining factor of QoL13,17,38. Low socioeconomic status both increases the risks that predispose to CKD, as well as worsens the outcomes of those with the disease15. In this study, most individuals (43.1%) had a family income between 1 and 2 minimum wages, and the lower the income, the worse the QoL. Therefore, there is a greater association of socioeconomic level with physical health domains, as well as profession, which is a predictor of better QoL for functional capacity among employed individuals.

Thus, the set of associations of sociodemographic characteristics allow us to assume that individuals with higher education and better socioeconomic status develop more intellectual activities, requiring less physical effort, preserving physical health, in addition to presenting better economic conditions and greater clarification to deal with the disease16,17,32,38.

Besides socioeconomic factors, the lifestyle habits of hemodialysis population also impact QoL39,31,40. Smoking and alcohol consumption are poorly studied habits in this population, however some studies demonstrate their low prevalence in patients on HD36,40. In this study, even considering a minority with high smoking burden, it negatively affected their functional capacity. Moreover, the consumption of alcoholic beverages, despite negatively affecting their functional capacity, positively impacted their mental health.

In our findings, the practice of physical activity was a predictor for all QoL domains, proving the benefit of practicing some exercise both for physical and mental health, for patients on HD. However, despite the Kidney Disease Outcomes Quality Initiative (KDQOI) guidelines recommending that HD patients be encouraged to increase their level of physical activity40, studies have verified the low adherence to physical activity practice by this population, as well as this study, and have focused on proving the clinical and QoL benefits of the regular practice of physical activity31,39,42.

The improvement in physical performance and QoL of patients on HD was verified after an exercise program for 6 months, safely allowing the encouragement of simple and sustainable physical activity in this population, with the aim of improving clinical outcomes43.

Since frailty and physical malfunction are perhaps the most disabling disorders in patients on chronic dialysis44,45, our findings, in agreement with the studies mentioned above, prove the practice of physical activity as a fundamental practice for QoL of patients on HD.

Clinical characteristics were also identified as predictors of QoL. The time on hemodialysis showed an inverse association with the physical aspect and pain domains, indicating worsening of pain and physical aspect, the longer the time on HD. On the other hand, individuals between 6 to 10 years of hemodialysis treatment presented better emotional aspects, reflecting once again the patient’s adaptation to the disease over the years. Previous studies have failed to prove the effect of hemodialysis time on QoL38,40,47,48. However, Pan et al., (2018)32observed that time on hemodialysis above 4.5 years was inversely associated with QoL, and a positive association was observed between longer dialysis time and the mental component, a result similar to our findings .

Another clinical feature predicting the emotional aspect was the number of medications. It is known that the population with CKD commonly has other associated diseases. Multimorbidity, the presence of two or more diseases in the same individual is frequently observed in this population, and has become a growing concern in the care of individuals with CKD, resulting in an increase in the treatment burden and contributing to polypharmacy49,50.

Unlike previous studies17,38,51 that identified that the greater the number of medications being used by the individual, the worse the QoL, this study showed that individuals using five or more medications had a better emotional aspect when compared to individuals using fewer medications. Thus, the drug load contributed positively to the study population, however, in addition to the impact of the disease itself, the patient with CKD on HD is subjected to the consequences of the treatment itself, which despite the benefits also causes complications52.

Intradialytic complications are frequently seen in patients on HD52 and play a significant role in worsening QoL32. In this study, most individuals (85.05%) had 3 or more complications, placing themselves as the clinical characteristic that is most associated with QoL. Therefore, the greater the number of complications, the worse the QoL, emphasizing the vulnerability of these individuals and the necessary intervention for this modifiable risk factor very present in this population.

Finally, this study has some limitations. Due to the cross-sectional nature of the study, it was not possible to determine a causal effect between QoL and the study variables. In addition, this study was carried out in a single state in Brazil, but the results may support further studies that point to a causal relationship. However, the strengths of the study help to circumvent this limitation. Since the metropolitan region surveyed concentrates the largest number of individuals undergoing HD in the state, provided us a large sample size. In addition, the use of all domains of QoL is highlighted, which allows exploring the influence of each variable studied on quality of life and precisely identifies the most effected domains.

CONCLUSION

Quality of life is impacted by different aspects involving CKD, such as social, clinical and lifestyle characteristics. Therefore, in addition to considering the various factors that influence quality of life, we demonstrate the importance of using quality of life in all its dimensions, identifying the positive or negative associations between each factor with each domain of quality of life.

The male sex is highlighted as a predictor of better physical and mental health, and the influence of age group characterizes elderly people with better mental health despite the impairment in physical health. Physical activity was an important predictor of QoL, highlighting that the absence of physical activity is associated with worse physical and mental health. Clinically, it was possible to observe how the number of complications negatively affects the QoL of HD patients, since having 3 or more complications was associated with worse physical and mental QoL. Encouraging the practice of physical activity and preventing intradialytic complications are modifiable factors that can promote the QOL of HD patients, contributing to a better health outcome. As low QOL is one of the main problems in this population, our findings highlighted the potential of QOL assessment for holistic clinical treatment.

Acknowledgments

The present work was carried out with the support of the Espírito Santo Foundation for Research and Innovation (Fapes) Edital Fapes N◦05/2023 Publicação de Artigos Técnico-Científicos- 10◦ Ciclo and FAPES/CNPq/Decit-SCTIE-MS/SESA Nº 03/2018 - PPSUS.

REFERENCES

1. World Health Organization. Global status report on noncommunicable diseases 2010. World Health Organization. 2011. Accessed in february 15. https://apps.who.int/iris/handle/10665/44579. [ Links ]

2. GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet (London, England). 2020; 395(10225), 709-733. https://doi.org/10.1016/S0140-6736 (20)30045-3Links ]

3. Thomé FS, Sesso RC, Lopes AA, Lugon JR, Martins CT. Inquérito Brasileiro de Diálise Crônica 2017. Braz J Nephrol. 2019;41 (2): 208-14. https://doi.org/10.1590/2175-8239-JBN-2018-0178Links ]

4. Neves PD, Sesso RC, Thomé RS, Lugon JR, Nascimento MM. Censo Brasileiro de Diálise: análise de dados da década 2009-2018. Braz J Nephrol. 2020;42(2):191-200. https://doi.org/10.1590/2175-8239-JBN-2019-0234Links ]

5. Sousa-Martins PD, Moura A, Madureira J, Alija P, Oliveira JG, Lopez M, Filgueiras M, Amado L, Sameiro-Faria M, Miranda V, Mesquita E, Teixeira L, Poveda V, Lobato L, Santos-Silva A, Costa E. Risk factors for mortality in end-stage kidney disease patients under online-hemodiafiltration: three-year follow-up study. Biomarkers. 2016;21 (6): 544-50. https://doi.org/10.3109/1354750X.2016.1160428Links ]

6. Ayanda KA, Abiodum OA, Ajiboye PO. Quality of Life of Chronic Kidney Disease Patients in a Nigerian Teaching Hospital. JBAH. 2014;4(5):17-28. https://iiste.org/Journals/index.php/JBAH/article/view/11229/11519Links ]

7. Brito DCS, Machado EL, Reis IA, Moreira DP, Nébias THM, Cherchiglia ML. Modality transition on renal replacement therapy and quality of life of patients: a 10-year follow-up cohort study. Qual Life Res. 2019;28(6):1485-1495. https://doi.org/10.1007/s11136-019-02113-zLinks ]

8. Legrand K, Speyer E, Stengel B, Frimat, L, Ngueyon Sime W, Massy ZA, Fouque D, Laville M, Combe C, Jacquelinet C, Durand AC, Edet S, Gentile S, Briançon S, Ayav C. Perceived Health and Quality of Life in Patients With CKD, Including Those With Kidney Failure: Findings From National Surveys in France. Am J Kidney Dis. 2020;75(6):868-878. https://doi.org/10.1053/j.ajkd.2019.08.026Links ]

9. Zyga S, Alikari V, Sachlas A, Stathoulis, J, Aroni A, Theofilou P, Panoutsopoulos G. Management of Pain and Quality of Life in Patients with Chronic Kidney Disease Undergoing Hemodialysis. Pain Manag Nurs. 2015;16(5), 712-720. https://doi.org/10.1016/j.pmn.2015.03.004Links ]

10. Seidl EM, Zannon CML. Qualidade de vida e saúde: aspectos conceituais e metodológicos. Cad Saúde Pública. 2004;20(2), 580-8. https://doi.org/10.1590/S0102-311X2004000200027Links ]

11. Awuah KT, Finkelstein SH, Finkelstein FO. Quality of life of chronic kidney disease patients in developing countries. Kidney Int Suppl. 2013;3(2), 227-229. https://doi.org/10.1038/kisup.2013.20Links ]

12. Broers JHN, Kooman LA, van der Sande FM, Lacson E, Jr Kotanko P, Maddux FW. Quality of Life in Dialysis Patients: A Retrospective Cohort Study. Nephron. 2015;130(2):105-12. https://doi.org/10.1159/000430814Links ]

13. Cruz MC, Andrade C, Urrutia M, Draibe S, Nogueira-Martins LA, Sesso RC. Quality of life in patients with chronic kidney disease. Clinics. 2011;66(6):991-995. https://doi.org/10.1590/s1807-59322011000600012Links ]

14. Barreto SM, Ladeira RM, Duncan BB, Schmidt MI, Lopes AA, Benseñor IM, Chor D, Griep RH, Vidigal PG, Ribeiro AL, Lotufo PA, Mill JG. Chronic kidney disease among adult participants of the ELSA-Brasil cohort: association with race and socioeconomic position. J Epidemiol and Community Health. 2015;70:380-389. https://doi.org/10.1136/jech-2015-205834Links ]

15. Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, Saran R, Wang AY, Yang CW. Chronic kidney disease: global dimensions and perspectives. Lancet. 2013;20;382(9888):260-72. https://doi.org/10.1016/S0140-6736 (13)60687-XLinks ]

16. Moreira CA, Junior WG, lima LF, Lima RC, Ribeiro JF, Miranda AF. Avaliação das propriedades psicométricas básicas para a versão em português do KDQOL-SFTM. Rev Assoc Med Bras. 2009;55(1): 22-8. https://doi.org/10.1590/S0104-42302009000100010Links ]

17. Kefale B, Alebachew M, Tadesse Y, Engidawork E. Quality of life and its predictors among patients with chronic kidney disease: A hospital-based cross sectional study. PloS one. 2019;14(2), e0212184. https://doi.org/10.1371/journal.pone.0212184Links ]

18. Han SS, Kim KW, Na KY, Chae DW, Kim YS, Kim S, Chin HJ. Quality of life and mortality from a nephrologist's view: a prospective observational study. BMC nephrology. 2009;10, 39. https://doi.org/10.1186/1471-2369-10-39Links ]

19. Kalantar-zazeh K, Kople JD, Block G, Humphreys MH. Association among SF36 quality of life measures and nutrition, hospitalization, and mortality in hemodialysis. J Am Soc Nephrol, 2001;12(12):2797-2806. https://doi.org/10.1681/ASN.V12122797Links ]

20. Ibrahim N, Teo SS, Che Din N, Abdul Gafor AH, Ismail R. The Role of Personality and Social Support in Health-Related Quality of Life in Chronic Kidney Disease Patients. PloS one. 2015;10(7), e0129015. https://doi.org/10.1371/journal.pone.0129015Links ]

21. Han, E., Shiraz, F., Haldane, V. et al. Biopsychosocial experiences and coping strategies of elderly ESRD patients: a qualitative study to inform the development of more holistic and person-centred health services in Singapore. BMC Public Health 19, 1107 (2019). https://doi.org/10.1186/s12889-019-7433-6Links ]

22. Jeremias-Martins E, Chatkin JM. Does everyone who quit smoking gain weight? A real-world prospective cohort study. J Bras Pneumol. 2019;45(1):e20180010. http://dx.doi.org/10.1590/1806-3713/e20180010Links ]

23. WHO guidelines on physical activity and sedentary behaviour. Geneva: World Health Organization; 2020. https://www.who.int/publications/i/item/9789240015128Links ]

24. Ciconelli R, Ferraz M, Santos W, Meinão I, Quaresma MR. Tradução para a língua portuguesa e validação do questionário genérico de avaliação de qualidade de vida SF-36 (Brasil SF-36). Rev Bras Reumatol, 1999;39(3):143-50. https://www.ufjf.br/renato_nunes/files/2014/03/Valida%25C3%25A7%25C3%25A3o-do-Question%25C3%25A1rio-de-qualidade-de-Vida-SF-36.pdfLinks ]

25. Ware JE, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992;30(6), 473-483. https://pubmed.ncbi.nlm.nih.gov/1593914/Links ]

26. Oliveira TS, Valente AT, Caetano CG, Garagarza CA. Nutritional parameters as mortality predictors in hemodialysis: differences between genders. Journal of Renal Care. 2017;43(2):83-91. https://doi.org/10.1111/jorc.12201Links ]

27. Bohlke M, Nunes DL, Marini SS, Kitamura C, Andrade M, Von-Gysel MP. Predictors of quality of life among patients on dialysis in southern Brazil. Sao Paulo Med J. 2008;126(5):252-6. https://doi.org/10.1590/S1516-31802008000500002Links ]

28. Machado LR, Car MR. A dialética da vida cotidiana de doentes com insuficiência renal crônica: entre o inevitável e o casual. Rev Esc Enferm USP. 2003;37(3): 27-35v. https://doi.org/10.1590/S0080-62342003000300004Links ]

29. Zhou X, Xue F, Wang H, Li L, Li R. The quality of life and associated factors in patients on maintenance hemodialysis - a multicenter study in Shanxi province. Ren Fail. 2017;39(1),707-711. https://doi.org/10.1080/0886022X.2017.1398095Links ]

30. Hall RK, Cary MPJ, Washington TR, Cólon-Emeric CS. Quality of life in older adults receiving hemodialysis: a qualitative study. Qual Life Res. 2020;29(3):655-663. https://doi.org/10.1007/s11136-019-02349-9Links ]

31. Fukushima RL, Costa JL, Orlandi FS. Atividade física e qualidade de vida de pacientes com doença renal crônica em hemodiálise. Fioter Pesqui. 2018;25(3):338-344. https://doi.org/10.1590/1809-2950/18021425032018Links ]

32. Pan CW, Wu Y, Zhou HJ, Xu BX, Wang P. Health-Related Quality of Life and Its Factors of Hemodialysis Patients in Suzhou, China. Blood Purif. 2018;45(4): 327-333. https://doi.org/10.1159/000485962Links ]

33. Gerogianni G, Lianos E, Kouzoupis A, Polikandrioti M, Grapsa E. The role of socio-demographic factors in depression and anxiety of patients on hemodialysis: an observational cross-sectional study. Int Urol Nephrol. 2018;50(1):143-154. https://doi.org/10.1007/s11255-017-1738-0Links ]

34. Norris KC, Williams SF, Rhee CM, Nicholas SB, Kovesdy CP, Kalantar-Zadeh K, Ebony Boulware L. Hemodialysis Disparities in African Americans: The Deeply Integrated Concept of Race in the Social Fabric of Our Society. Semin Dial. 2017;30(3), 213-223. https://doi.org/10.1111/sdi.12589Links ]

35. Wilkinson E, Brettle A, Waqar M, Randhawa G. Inequalities and outcomes: end stage kidney disease in ethnic minorities. BMC Nephrol. 2019;20(1):234. https://doi.org/10.1186/s12882-019-1410-2Links ]

36. Eneanya ND, Maddux DW, Reviriego-Mendoza MM, Larkin JW, Usvyat LA, van der Sande FM, Kooman JP, Maddux FW. Longitudinal patterns of health-related quality of life and dialysis modality: a national cohort study. BMC Nephrol. 2019;20, 7. https://doi.org/10.1186/s12882-018-1198-5Links ]

37. Lopes GB, James SA, Lopes MB, Penalva CC, Silva CTJE, Matos CM, Martins MTS, Lopes AA. John Henryism and Perceived Health among Hemodialysis Patients in a Multiracial Brazilian Population: the PROHEMO. Ethn Dis. 2018;28(4), 539-548. https://doi.org/10.18865/ed.28.4.539Links ]

38. Zyoud SH, Daraghmeh DN, Mezyed DO, Khdeir R, Sawafta MN, Ayaseh NA, Tabeeb GH, Sweileh WM, Awang R, Al-Jabi SW. Factors affecting quality of life in patients on haemodialysis: a cross-sectional study from Palestine. BMC Nephrol. 2016;17(1), 44. https://doi.org/10.1186/s12882-016-0257-zLinks ]

39. Hornik B, Dulawa J. Frailty, Quality of Life, Anxiety, and Other Factors Affecting Adherence to Physical Activity Recommendations by Hemodialysis Patients. Int J Environ Res Public Health. 2019;16(10), 1827. https://doi.org/10.3390/ijerph16101827Links ]

40. Ramos ECC, Santos IS, Zanini RV, Ramos JMG. Qualidade de vida de pacientes renais crônicos em diálise peritoneal e hemodiálise. J Bras Nefrol. 2015;37(3):297-305. http://doi:10.5935/0101-2800.20150049Links ]

41. K/DOQI Workgroup. K/DOQI clinical practice guidelines for cardiovascular disease in dialysis patients. Am J Kidney Dis. 2005;45(4 Suppl 3):S1-153. https://doi.org/10.1053/j.ajkd.2005.01.019Links ]

42. Mallamaci F, Pisano A, Tripepi G. Physical activity in chronic kidney disease and the EXerCise Introduction To Enhance trial. Nephrol Dial Transplant. 2020;35(Suppl 2), ii18-ii22. https://doi.org/10.1093/ndt/gfaa012Links ]

43. Manfredini F, Mallamaci F, D'Arrigo G, Baggetta R, Bolignano D, Torino C, Lamberti N, Bertoli S, Ciurlino D, Rocca-Rey L, Barillà A, Battaglia Y, Rapanà RM, Zuccalà A, Bonanno G, Fatuzzo P, Rapisarda F, Rastelli S, Fabrizi F, Messa P, … Zoccali C. Exercise in Patients on Dialysis: A Multicenter, Randomized Clinical Trial. J Am Soc Nephrol. 2017;28(4), 1259-1268. https://doi.org/10.1681/ASN.2016030378Links ]

44. Fitzpatrick J, Sozio SM, Jaar BG, Estrella MM, Segev DL, Parekh RS, McAdams-DeMarco MA. Frailty, body composition and the risk of mortality in incident hemodialysis patients: the Predictors of Arrhythmic and Cardiovascular Risk in End Stage Renal Disease study. Nephrol Dial Transplant. 2019;34(2), 346-354. https://doi.org/10.1093/ndt/gfy124Links ]

45. Johansen KL, Chertow GM, Ng AV, Mulligan K, Carey S, Schoenfeld PY, Kent-Braun JA. Physical activity levels in patients on hemodialysis and healthy sedentary controls. Kidney Int. 2000;57(6): 2564-70. https://doi.org/10.1046/j.1523-1755.2000.00116.xLinks ]

46. Manfredini F, Lamberti N, Malagoni AN, Felisatti M, Zuccalà A, Torino C, Tripepi G, Catizone L, Mallamaci F, Zoccali C. The role of deconditioning in the end-stage renal disease myopathy: physical exercise improves altered resting muscle oxygen consumption. Am J Nephrol. 2015;41 (4-5): 329-36. https://doi.org/10.1159/000431339Links ]

47. Khatib ST, Hemadneh MK, Hasan SA, Khazneh E, Zyoud SH. Quality of life in hemodialysis diabetic patients: a multicenter cross-sectional study from Palestine. BMC Nephrol. 2018;19(1), 49. https://doi.org/10.1186/s12882-018-0849-xLinks ]

48. Dejvorakul S, Kumar R, Srirojanakul S, Panupichit N, Somrongthong R. Factors predicted with quality of life among hemodialysis patients in private hospital of Thailand. Hosp Pract. 2019;47(5): 254-258. http://doi:10.1080 / 21548331.2019.1682879Links ]

49. Lee WC, Lee YT, Li LC, Ng HY, Kuo WH, Lin PT, Liao YC, Chiou TT, Lee CT. The Number of Comorbidities Predicts Renal Outcomes in Patients with Stage 3?5 Chronic Kidney Disease. J Clin Med. 2018;7(12),493. http://doi:10.3390/jcm7120493Links ]

50. Sullivan MK, Rankin AJ, Jani BD, Mair FS, Mark PB. Associations between multimorbidity and adverse clinical outcomes in patients with chronic kidney disease: a systematic review and meta-analysis. BMJ Open. 2020;10(6), e038401. http://doi:10.1136/bmjopen-2020-038401Links ]

51. Chiu YW, Teitelbaum I, Misra M, Leon EM, Adzize T, Mehrotra R. Pill burden, adherence, hyperphosphatemia, and quality of life in maintenance dialysis patients. Clin J Am Soc Nephrol. 2009;4(6), 1089-1096. http://doi:10.2215/CJN.00290109Links ]

52. Davenport A. Intradialytic complications during hemodialysis. Hemodialysis International. 2006;10 (2): 162-7. http://doi:10.1111 / j.1542-4758.2006.00088.xLinks ]

Received: May 2023; Accepted: August 2023; Published: December 2023

Corresponding author lucianebresciani@gmail.com

Conflicts of Interest:

The authors report no conflict of interest.

Creative Commons License This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.